NOVEMBER 2019

TECHNICAL APPENDIX

PART 1 - SUSTAINABLE HYDROGEN PRODUCTION

SUNRISE Solar Energy for a Circular Economy

Technological Roadmap

Technical Appendix Part 1 - Sustainable Hydrogen Production

November 2019

Authors: Carina Faber (UCLouvain), Yagut Allahverdiyeva-Rinne (University of Turku), Vincent Artero (CEA), Laurent Baraton (Engie), Andrea Barbieri (CNR), Hervé Bercegol (CEA), Maximilian Fleischer (Siemens), Han Huynhthi (Engie), Joanna Kargul (Warsaw University), Hélène Lepaumier (Engie), Laura Lopez (ICIQ), Ann Magnuson (Uppsala University), Arne Roth (Fraunhofer)

Contributors: Nicola Armaroli (CNR), Eva-Mari Aro (University of Turku), Stefan Baumann (FZ Jülich), Artur Braun (EMPA), Stefano Cucurachi (Leiden University) James Durrant (Imperial College), Huub de Groot (Leiden University), Leif Hammarström (Uppsala University), Juliette Jouhet (CEA & CNRS), Henrik Koch (NTNU), Jan Mertens (Engie), Marcel Meeus (EMIRI), Robert Potter (Johnson Matthey), Martin Roeb (DLR), Anita Schneider (EERA), Antonin VIcek (Heyrovsky Institute)

Definitions	4
Sustainable hydrogen production	5
Conventional process data	5
SUNRISE technologies	6
Large-Scale hydrogen production using PEM electrolysis	6
Hydrogen production using photoelectrochemical cell devices	16
Hydrogen via buried-junction photoelectrochemical cells	31
Hydrogen production by photosynthetic microorganisms	46
Hydrogen photoproduction by biomolecular technologies	57
Baggies with particulate systems	71

Sustainable ammonia production

Conventional process data

- Biomass-based process
- SUNRISE technologies

Renewable Haber-Bosch process Electrochemical ammonia synthesis Direct photoelectrochemical ammonia synthesis Ammonium production by photosynthetic microorganisms Plasma-assisted ammonia synthesis

Sustainable carbon-based chemicals and (jet)fuels

Conventional process data
Biomass-based process
SUNRISE technologies
Dark electrochemical reduction of CO2 to C1/C2/C3 products
Electrochemical production of hydrocarbon fuels
Thermochemical production of hydrocarbons and jet fuels
Biocatalytic production of chemicals by microorganisms
Carbon-based fuel production by biomolecular approaches

Sustainable Carbon Capture

Amine-based Carbon Capture Polymeric membranes based carbon capture Low Temperature Direct Air Capture High Temperature Direct Air Capture

SUNRISE key enablers

Computational materials modelling: from novel materials to solar fuel devices

Development of new methods and software tools for early quantitative sustainability assessment of emerging SUNRISE technologies: bridging environmental, economic and social impacts

Redesigning photosynthesis for the biocatalytic production of chemicals and fuels

Synthetic Biology

Bottom-up chemical engineering of bioinspired artificial photosynthesis reactor materials and cascades

Upscaling artificial photosynthesis systems for a sustainable larger scale production of energy carriers

Oxygen evolution (Water oxidation)

Definitions

Energy: specific energy consumption (**SEC**) in GJ/t is the amount of energy that an average plant requires to produce a specific product. It includes net electricity and fuel consumption to provide heat, hence processes generating electricity or supplying excess steam are accounted for in the SEC. The **total energy demand** in addition to the SEC contributions also includes the energy required to produce the feedstock used in the process and the energy content of the feedstock which is built in the product.

Carbon footprint: Emissions during synthesis of the target product comprise energy related emissions (i.e. heat and electricity) and process related emissions (e.g. CO2 generated in ammonia synthesis), i.e. **cradle to gate** contributions (Production of methanol from hydrogen and CO2 includes the supply of electricity for electrolysis of water to produce hydrogen, the electrolysis process itself, capture and supply of CO2 and subsequent methanol synthesis).

		Milestones			
TRL	Common to all RE alt. fuels sectors		TRL	Common to all sectors	RE alt. fuels
1	Identification of new concept, applications and barriers	New concept identified, benefits and technological gaps identified Definition of the proof of concept, first indications of fuel properties		Technology pilot demonstrated in relevant environment,	Pilot scale prototype fine-tuned in field
	Definition of application, consideration of			manufacturing strategy defined	
2	interfaces and commercial offer		7	Pilot demonstrated in operational environment, manufacturing approach	Fuel qualification completed
3	Proof of concept prototype ready: concept is laboratory tested	Proof of concept verified through simulation Fuel/process tested and validated at laboratory scale (small-scale prototype/simulation model)		demonstrated Technology in its final form, low-rate	System certified for market application, compliance with legal
4	Integrated small-scale			production	obligations
	systems laboratory validated			System fully operational and ready for	New technology fully operationa and market available, full-rate
5	Large-scale prototype completed with auxiliaries, refined commercial assessment	Large-scale prototype realized		commercialization	

Technology Readiness Level (TRL):

TRL: based on Technology Readiness Level: Guidance Principles for Renewable Energy technologies, DG RTD 2017;

Sustainable hydrogen production

Conventional process data

Conventional fossil-based process	Steam-reforming of natural gas
Global annual production volume	70 Mt (total production) < 0.1% from electrolysis of water (IEA 2019)
Total energy demand [GJ/t]	165 GJ/t
Energy feedstock [GJ/t]	Natural gas (methane): 205 billion m ³ Coal: 107 Mt
Fuel demand [GJ/t]	
Steam balance [GJ/t]	
Electricity [GJ/t]	
Air separation unit	
Compressors	
CO ₂ emissions [tCO2 eq/t] (cradle-to-gate, including feedstock production)	12 t CO_2/t H ₂ net emissions (<u>not</u> including feedstock production) Up to 9% higher emissions due to source leakage
Water consumption per t product	6.6 m ³ /t
Current TRL	9
Current cost per t product	1000 USD (1 \$/kg), with no CCUS Approx 2000 – 2500 USD (2-2.5\$/kg) with CCUS
DOI References	"The future of hydrogen", IEA 2019. The report was prepared as an input for the 2019 G20 Osaka Summit, and is an IEA contribution. The report lays out where things stand now; the ways in which hydrogen can help to achieve a clean, secure and affordable energy future; and how governments and industry can go about realising its potential. Together with other related information, the report can be found at the IEA hydrogen web portal at <u>https://www.iea.org/topics/hydrogen/</u> .

SUNRISE technologies

Large-Scale hydrogen production using PEM electrolysis

Technology		Large-Scale hydrogen production using PEM electrolysis											
Targeted product		H ₂	$\rm NH_3$	CH₃OH	EtOH	CH₄	Jet fuel	СС	CO ₂		CO ₂ Other		
Nature of active material	X	S In	olid-sta lorgani	ite c		Molecul	ar		Biomolecul	ar	Biological (living cells)		
Sunrise approach	Х	X PV-powered electrocatalysis			Photoelectro- chemical direct conversion			biological and biohybrid direct conversion		Key enabler*, Other			
Device category	X Electrolyzer Photo(bio)elect rolyzer Photo(bio)reac tor		fermentors, thermocatal ytic reactors										
Contribution to SUNRISE goals (what?)		Sustainable low-carbon production of carbon-based fuels with high efficiency and competitive costs Sustainable low-carbon production of carbon-based commodity chemicals with high efficiency and competitive costs Sustainable low-carbon production of ammonia by providing H ₂ as feedstock with high efficiency and competitive costs X Sustainable low-carbon production of hydrogen with high efficiency and competitive costs Image: CO2 as a valuable feedstock											
	Sustainable <u>building materials</u> , mineralization												
Sustainability criteria		C	Carbon	capture fro	om the a	atmosphe	ere						
		С	Carbon	capture fro	om poin	t sources	s/ flue ga	S					
		Exclusive use of abundantly available, non-toxic and non-critical elements											

	Sunlight as the primary energy source						
	x Low resource consumption						
	X Solar to products y	/ields 1	tenfold to hundred	lfold hi	gher than current	biomas	s practice
Envisaged production	X Decentralized, local production at small scale (households, niche applications)					ations)	
system	Large-scale prod	Large-scale production using existing centralized infrastructure					
	X Large-scale prod	luction	necessitating new	v cent	ralized infrastructu	ire	
Rough timeline (when?)	Short term (2020-25)		Medium term (2025–30)		Long term (2030–50)		
	TRL°	7-9	TRL°	9	TRL°		
Who are the main actors? Who has to be involved?	TRL°7-9SIEMENS NEL ITM Hydrogenics (acquired by Cu AREVA H2Gen Missing R&D and academic - Precious-metal free - Stable anionic mem - Process engineerinInstitut Européen des Membr Institut Charles Gerhardt Mines ParisTech China US DoE e-conversion Cluster of 2019-2026) https://www		ummins) cs working on : e catalysts nbranes ng of PEM electro ranes Excellence in (c.e-conversion.o	olyser: Germ de/	s (stack lifetime/ł	neat ma	inagement)

* key enabler: fundamental for diverse technological approaches ° TRL: see Annex

Contributors	Various
Affiliation	Various

1. Short description of the proposed technological solution

Main technological elements, working principle (max. 5 lines, for scientists not expert in the field)	Low-temperature PEM electrolysis uses proton-conducting polymer membranes between the two classical electrodes where water splitting and hydrogen formation take place. The main advantages of this technology are: improved yields, higher flexibility toward electrical input (better suited for RES), safer operation due to the absence of corrosive electrolyte compared to alkaline electrolyzers.
Why is this technology not commercially available right now? (major challenges)	Mid-scale (20 MW) PEM electrolyser are already commercial. Large-scale PEM electrolyser using current technology would be limited to 1 GW/yr due to the use of critical materials such as iridium. Cost of PEM stacks is a second bottleneck mainly due to the lack of automated manufacturing chains. Finally, current stacks last around 45000h, which leads to high maintenance costs.
What does it take to make it happen? (in short)	On the catalyst aspect, membranes using lower loading of iridium and platinum would unlock large-scale PEM electrolysis. Alternative pathways would be (i) to develop precious-metal free catalysts (ii) to develop stable anionic membranes that would allow the get rid of iridium-based catalysts. On the engineering aspects, modular, compact electrolysers designs are required as well as longer stack lifetime. On the manufacturing aspects, the setup of dedicated, automated production lines will be needed to leverage costs issue. This would also benefit to fuel-cells industry. Alternative pathway could be the development of new cationic membrane to substitute Nafion (sulfonate based, one single supplier).
What is the benefit for society? (in short)	Access to low-cost green hydrogen. Easier implementation of RES seasonal storage.

2. Existing R&I projects

Existing national/EU project	Final objective	TRL	Run-time	Funding Instrument
FCH-JU	Implement hydrogen economy	1-9	-	FCH-JU

3. <u>State-of-the-Art: where are we now?</u>

Technological solution to be developed in SUNRISE	Electrochemical H2 production from solar electricity at large scale
TRL	7 - 9
Cost	1000 €/KWh □ 100 € kW for electrolyzer at scale
Energetic conversion yield	65% 🗆 75%(higher heating value)
Stability	Years
Product separation yield	OK, few O2 residues in H2 can be easily removed
Total energy demand [GJ/t]	
Electricity needs [GJ/t]	
Energy demand utilities [GJ/t]	
Steam balance [GJ/t]	
CO ₂ emissions [tCO2 eq/t] (cradle-to-gate, including feedstock production)	
Water consumption	Given by chemical reaction: 9 I water per kg H2
Air separation unit	
Compressors	Dependent on application setting, sometimes close to atmospheric, sometimes 20-30 bar
Resources	Current technology uses Iridium catalyst for O2 evolution thst needs to be replaced by another material
DOI References	

4. Available techno-economical analysis:

DOI Reference	doi.org/10.1038/s41560-019-0326-1
Summary	G. Glenk & S. Reichelstein (2019) "Economics of converting renewable power to hydrogen" Nature Energy 4, 216-222.

The paper describes a model of a hybrid energy system that combines renewable power with an efficiently sized power-to-gas facility. The available capacity can be optimized in real time to take advantage of fluctuations in electricity prices and intermittent renewable power generation. The model was applied to the current environment in both Germany and Texas. A key finding is that renewable hydrogen is cost competitive in niche applications, although not yet for industrial-scale supply.

5. <u>Deliverables, milestones</u>

Milestones for the short, medium and long terms are given in separate tables below

Timescale: short-/medium-/long-term	Short term
Deliverable, milestone	Dilution of Iridium for oxygen evolution (OER)
Solved Challenges / Lifted barrier (in bullet points)	 Ir is scarce, develop technologies to reduce from 2 mg/cm2 to 0,2 mg/cms
What was necessary to solve the challenge? Did it depend on advances in other fields?	Develop new nanostructured catalyst mix materials like core.shell structures, Ir dilution in alloys
TRL	6
Stability	10000h
Energetic conversion efficiency	70%
Scale	MW
DOI Reference	

Timescale: short-/medium-/long-term	Medium term
Deliverable, milestone	Replacement of Iridium for oxygen evolution (OER)
Solved Challenges / Lifted barrier (in bullet points)	 Ir is scarce, develop technologies that use abundant materials that have similar robustness and overpotentials

What was necessary to solve the challenge? Did it depend on advances in other fields?	 Develop new nanostructured compounds (e.g. PolyMetalOxalats POM, Metal Oxide Frameworks MOFS) that contain no Iridium
TRL	6
Stability	10000h
Energetic conversion efficiency	70%
Scale	MW

Timescale short-/medium-/long-term	Medium term
Deliverable, milestone	Develop Anion Exchange Membranes (AEM), which are OH- conducting and allow the use of alkaline electrolytes
Solved Challenges / Lifted barrier (in bullet points)	Using alkaline electrolyte would release the burden to replace Iridium since several OER catalysts are available in the alkaline regime
What was necessary to solve the challenge?	General advances in membrane technologies
TRL	6
Stability	1 year at least
Energetic conversion efficiency	70%+
Scale	MW
DOI Reference	

Timescale: short-/medium-/long-term	Long-term
Deliverable, milestone	Automated and optimized manufacturing technologies for PEM electrolysers
Solved Challenges / Lifted barrier (in bullet points)	 Bring down bill of materials (BOM) and manufacturing price (labour) by automatisation Price target < 100€/kW including balance of system at scale

What was necessary to solve the challenge?	Use advanced industrial manufacturing technologies, cheaper power electronics
TRL	9
Stability	Electrolyser has 20 years lifetime with yearly maintenance
Energetic conversion efficiency	75%
Scale	GW

Link to TRL level

At TRL 5-6: See TRL 7-8

At TRL 7-8:

Production volume	50 000 t/yr (= current production volume from pure electrolysis)
Light harvesting area needed per t/product	Assuming 1000 W/m ² At 10-15% STH efficiency: 35-55 m ² /t H ₂ (1 t/day production) For northern European insolation: ~175-275 m ² /t (Ref: James et al. (2009) "Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production" https://www.energy.gov/sites/prod/files/2014/03/f12/pec_technoe conomic_analysis.pdf)
Political/societal barriers to be overcome	Subsidies for hydrogen infrastructure (storage, transport, fuelling stations), to aid pilot plants and community-based testbed installments. European-wide outreach to boost public acceptance.
Market barriers to be overcome	Interest in H2 as fuel must be raised, e.g. Industry need to increase volumes in the fuel cell vehicle segment.

At TRL 9:

Production volume 70 Mt/yr (= current global production from steam reforming)	
---	--

Light harvesting area needed per t/product	Assuming 1000 W/m ² At 30% STH efficiency: 10-20 m ² /t H ₂ (1 t/day) (see above) For northern European insolation, area increases to ~50-100 m ² /t
Political/societal barriers to be overcome for market introduction	CO2-tax on artificial fertilizers from traditional fossil fuel-dense production. Tax alleviations for fuel-cell car owners.
Market barriers to be overcome	Switch from production from fossil sources must not only be economically feasible, but also bring additional value to producers. New opportunities for producers with no previous investments in fossil technology is necessary.

6. <u>Opportunity criteria</u>

The potential opportunity is scored from 0 (very low) to 12 (very high).

Opportunity criteria	Individual Score
Scalability, from individual house to communal small-scale and large-scale facilities	12
End-user price-tag on installment, competitive to other solutions	12
End-user (prosumer) access to renewable hydrogen at own property/compound	6
Customization of design and connection to other processes	10

7. Feasibility criteria

Feasibility criteria	Individual Score
Ease of installment	10
Scalability	12
Management cost (time and monetary)	7
Price-tag on installment	6 (depends on available subsidies)

	12 Without subsidies
Recyclability on de-comissioning	5
Lifetime (stability) of installment	10
Large-scale production necessitating new infrastructure	10

8. Key learning points

Decision points	Current PEM electrolysers can be used to start and implement demonstrators, but cannot be used for the energy transition at scale (TW) with reasonable pricing
Knowledge gaps	
Risks	When no Iridium replacement is found (or AEM membranes) the required scale cannot be achieved

<u>Resources</u>

Resource	Comment
Critical, rare elements	Non-noble metals are desirable, but materials using abundant metals need to be developed.
Non-fluctuating energy sources	
Hydrogen storage	Engineering and technological development which entails more investments rather than research.
CO2 storage	-
Water purification	Current technologies such as electrolysis (approach 1) have a great need for pure water. However, this does not have to be a limitation in future solutions. Some proof-of-principle devices are robust in impure water. More research Is needed to find this out.
CO2 from the atmosphere	-
Concentrated, pure CO2	-
Specific, new infrastructures	

Low-cost, low-carbon electricity	-
Renewable energy	
Renewable heat	

Breakthroughs in key enabling disciplines

Scale-Up	
System integration	Inherent to the technology
Novel reactor designs	Reactor/device design is a fundamental part of the development of this technology.
Novel catalyst materials: earth-abundant, non-toxic, efficient, stable	
Novel absorber materials: earth-abundant, non-toxic, efficient, stable	See above
Standardized life-cycle assessment methodologies	This will be needed on a long-term basis, but should be developed now.

Hydrogen production using photo-electrochemical cell devices

Technology (how?)	PI H	Photo-electrochemical (PEC) hydrogen production: H ₂ from solid-state PEC and dye-sensitized (DS) PEC devices											
Targeted product		1 ₂	NH ₃	CH	₃OH	Et(ОН	CH₄	Je	et fuel	CO ₂	Other	
	×	(
Nature of active material	x	Sol Ino	lid-stat rganic	te ;	x		Mol	ecular		х	Biomolecular		Biological (living cells)
Sunrise approach		PV-powered > electrocataly sis		X		Photoelectro- chemical direct conversion		0-		biological an biohybrid dire conversion	t ect	Key enabler*, Other	
Device category		Ele	ctrolyz	zer	Х		Pho ctro	ito(bio)e lyzer	le		Photo(bio)rea	act	fermentors, thermocatalyti c reactors
Contribution to SUNRISE goals (what?)		Sı cc	Sustainable low-carbon production of <u>carbon-based fuels</u> with high efficiency and competitive costs										
		Sı ef	Sustainable low-carbon production of carbon-based <u>commodity chemicals</u> with high efficiency and competitive costs										
		Sı cc	Sustainable low-carbon production of <u>ammonia</u> with high efficiency and competitive costs										
	×	Si CC	Sustainable low-carbon production of <u>hydrogen</u> with high efficiency and competitive costs										
		<u>C(</u>	<u>O₂ as</u>	a val	uable	e fee	dsto	ck					
		Sustainable building materials, mineralization											
Sustainability		Ca	arbon	capt	ure fro	om t ⁱ	he a	itmosph [,]	ere				
Chiena		Ca	arbon	capt	ure fro	om p	ooint	source	s/ fl	ue gas			
	X	(U:	se of a	abund	dantly	' ava	ailabl	le, non-t	oxi	c and n	on-critical elem	ents	
	×	X Sunlight as the primary energy source											

Envisaged production system	X Low resource consumption X Solar to products yields tenfold to hundredfold higher than current biomass practice X Decentralized, local production at small scale (households, niche applications) Large-scale production using existing centralized infrastructure Large-scale production pecessitating new centralized infrastructure						
Rough timeline (when?)	Short term (2020-25) Medium term (2025–30) Long term (2030–50)						
	TRL°	3-4	TRL°	5-6	TRL°	6-9	
Who are the main actors? Who has to be involved?	Solid-state PEC Engie Fraunhofer inst. f EPFL Helmholtz Cente Imperial (mekani: NREL JCAP Siemens E-conversion Clu Dye-Sensitized Swedish CAP (ce Royal Swedish T EPFL Univ Grenoble Al Univ Cambridge Japan: Tokyo Te USA: Univ North	For solar r Berlin smer) ester of E PEC (DS enter at l echnolog pes/CNF ch Carolina	energy systems Excellence in Ger S-PEC): Jppsala universi gical university (I RS/CEA	rmany h ty): ≺TH)	ttps://www.e-conve	ersion.d	e/

* key enabler: fundamental for diverse technological approaches ° TRL: see Annex

Contributors	Vincent Artero, Murielle Chavarot-Kerlidou (CEA, Univ. Grenoble Alpes), Leif Hammarström (Uppsala), Tobias Gärtner (Fraunhofer), Artur Braun (Empa), Gustav Berggren (Uppsala),
	Johannes Messinger (Uppsala), Andreas Kafizas (Imperial), Thomas Soller (Siemens), Laurent Baraton (Engie)

1. Short description of the proposed technological solution

Main technological elements,	Photoelectrochemical cells (PECs and DS-PECs)				
for scientists not expert in the field)	A single, integrated device based on abundantly available, non-toxic and cheap materials. It directly splits water into hydrogen and oxygen, where the needed energy is provided by sunlight. In a PEC device, the same surfaces are active in charge separation and catalysis, and there are no ohmic contacts to catalysts.				
	Solid state PEC				
	Solar energy is harvested by photoelectrodes composed of metal oxide and/or semiconductor photoelectrodes. Common materials include TiO2, CuCrO2). Photoanode and photocathode can be the same or separate (Back-to-back, or separated by a membrane).				
	Dye-sensitized PEC				
	Solar energy is harvested and converted on transparent electrodes which are functionalized with multicomponent photocatalytic molecular systems, combining dyes and catalysts in a way that the natural photosynthetic process is reproduced (a.k.a. Artificial photosynthesis). The used electrode materials are commonly nanostructured metal oxides (TiO2, NiO, CuGaO2, CuCrO2) and today's most efficient dyes include organic and metallo-organic pigments while catalysts are based on Co, Mn and Ni based. Mixed Solid state and Dye sensitized PEC systems can be developed				
Why is this technology not commercially available right now? (major challenges)	PEC To date, PEC tandem cell prototypes have shown low overall solar-to-hydrogen efficiencies (up to ~1 %). Thus far, prototypes have been on a very small scale, with low TRL levels (3 - 4). High performance materials are often susceptible to corrosion (e.g. c-Si), and is not straightforward to prevent. Intrinsically stable materials (e.g. transition metal oxides) show lower performance, mostly due to lower light absorption, and often limits the theoretical maximum efficiency to < 10%, but are promisingly simple to fabricate at scale. Suitable OER and HER co-catalysts are to some extent lacking. In the case of functional catalysts, the challenge is the creation of stable configurations of semiconductors and catalysts, stabilized in the liquid phase (electrolyte). Suitable OER and HER catalysts need to have				

	low overpotential (efficient), and be based on abundant, non-platinum group elements (sustainable). Dye-sensitized PEC Efficiencies of DS-PEC devices for water splitting are very low (0.05% solar-to-hydrogen conversion yield). Improving it by 2 to 3 orders of magnitude is the major challenge. However, one has to bare in mind that this represents a very young and emerging field with the first operating device reported only in 2012. Stability has only been granted for a few hours and is another challenge to address.
What does it take to make it happen? (in short)	PEC Developing novel and scalable coatings that can passivate high performance materials (e.g. c-Si) that are susceptible to corrosion, or, improving the performance of intrinsically stable materials (e.g. transition metal oxides). Demonstrating larger prototypes of promising architectures, in particular, PEC + PV hybrids. Identification of candidate materials through combinatorial exploration or computational modelling, followed by their synthesis, testing and optimization to develop new light absorber materials and surface co-catalysts. Solving stability issues at the semiconductor/liquid interface. Creation of standard devices for testing combinations of semiconductors and surface co-catalysts (which may otherwise yield different results than from isolated materials).
	DS-PEC The multiple interfaces between electrode supports, dyes and catalysts play a crucial role in these devices, and control the efficiency of light absorption, energy conversion and catalytic processes that do not take place at the same timescales. It is crucial to control the assembly of the molecules at the interface, i.e. to reproduce in a human-made system the optimized machinery of natural photosynthesis. For this, advances in understanding and controlling the light-driven electron-transfer processes at the interfaces are needed and molecular technology has to be explored to prepare more efficient photocatalytic systems that self-assemble and possibly self-repair; it also relies on progress in the finding of better semiconducting transparent materials.

	A safer by design approach should be used during its development phase.
What is the benefit for society? (in short)	Sustainable H2 production in scalable systems, for implementation in any desirable or necessary scale. A major advantage is the potential low cost of materials and processing. In particular molecular catalysts (DS-PEC) will allow avoiding noble metals and toxic materials. Decentralisation of production of H2 as fuel. Energy independence on local, regional and global level.

2. Existing R&I projects

Existing national/EU project	Final objective	TRL	Run-time	Funding Instrument
NANOPEC (Nanostructured Photoelectrodes for Energy Conversion) <u>https://cordis.europa.eu/project/rcn/894</u> <u>10/reporting/en</u>			3 years (ended Dec 2011)	EU ~€3.6 M
SOLAR FUEL BY III-VS https://cordis.europa.eu/project/rcn/102 899/reporting/en			3 years (ended July 2015)	EU ~€0.25 M
ARTIPHYCTION (Fully artificial photo-electrochemical device for low temperature hydrogen production) https://cordis.europa.eu/project/rcn/104 284/reporting/en			3 years (ended Oct 2015)	EU ~€3.6 M
SOLAROGENIX (Visible-Light Active Metal Oxide Nano-catalysts for Sustainable Solar Hydrogen Production) <u>https://cordis.europa.eu/project/rcn/106</u> <u>812/reporting/en</u>			3 years (ended Jan 2016)	EU ~€3.9 M
HETMAT (Heterostructure Nanomaterials for Water Splitting) <u>https://cordis.europa.eu/project/rcn/104</u> <u>906/reporting/en</u>			3 years (ended Oct 2016)	EU ~€0.1 M
PECDEMO (Photoelectrochemical			3 years	EU

Demonstrator Device for Solar Hydrogen Generation) https://cordis.europa.eu/project/rcn/185 723/reporting/en			(ended Mar 2017)	~€3.3 M
photocatH2ode https://cordis.europa.eu/project/rcn/104 489/factsheet/en			3 years (ended Nov 2017)	EU ~€1.5 M
ETASECS (Extremely Thin Absorbers for Solar Energy Conversion and Storage) https://cordis.europa.eu/project/rcn/185 <u>663/reporting/en</u>			3 years (ends in Aug 2019)	EU ~€2.15 M
a-leaf <u>http://www.a-leaf.eu/project/</u>	Demonstrate integrated prototype	3 - 5	2017.2020	EU/ H2020 FET Open
 UK 1. Nanocrystalline Water Splitting Photodiodes II 2. Nanocrystalline Photodiodes 3.Spectroscopic studies of water splitting photocatalysis Solar Optofluidics (SOLO) 4. Feasibility study of growth by MBE of As doped GaN layers for photoanode applications in hydrogen production by photoelectrochemical water splitting 5. Nanocrystalline Water Splitting Photodiodes 6. Energy and the Physical Sciences: Hydrogen Production using a Proton Electron Buffer 7. NanoEC 	 1.Device Engineering, Integration and Scale-up 2. Novel Devices for Water Splitting 3.Water Splitting beyond the 1.23 eV Thermodynamic con-straints 7. Towards a Parameter-Free Theory for Electro-chemical Phenomena at the Nanoscale 		Funding between 2011 up to 2022	EPSRC UK ~£6.1 M

DS-PEC				
Molecular-Semiconductor hybrid cells	Order of magnitude higher yield and stability compared to SOTA	3	2017-2019	Swedish Energy Agency
p-type	Finding p-type materials for DS-PEC photocathode	3	2017-2023	EC
https://www.e-conversion.de/	Cluster of Excellence e-conversion		2019-2026	DFG

3. <u>State-of-the-Art: where are we now?</u>

	PEC and DS-PEC devices for direct, photoelectrochemical H_2 production from solar energy
TRL	3
Cost	Cheap (2 €/kg H ₂ projected)
Energetic conversion yield	PEC: 1%; DS-PEC: 0.03%
	Projected: 27% (Total system energy cost not included) https://doi.org/10.1038/316495a0
Stability	Few hours
Product separation yield	Due to separation of the HER and OER reactions in PEC tandem devices (with use of an appropriate membrane), the product separation can be made feasible. This is not realized yet, but should not be an issue with a membrane.
Total energy demand [GJ/t]	124 PJ for total construction of a 1GW annual plant, producing 610 tonnes per day. Calculated EROI (Energy Return On Energy Investment) 2,7:1 at 20% STH efficiency (R. Sathre 2014) Possibly EROI 3,5:1 at 30% efficiency.
Electricity needs [GJ/t]	For the central processes (i.e. photocatalysis): 0 For PEC systems, utility systems need 7-15 GJ/t
	(As a comparison, pure electrolysis, regardless of power source, demands ~190 – 290 GJ/t (50-80 MWh/t) depending on electrolyser efficiency.)

Energy demand utilities [GJ/t]	7-15 GJ/t
Steam balance [GJ/t]	
CO ₂ emissions [tCO2 eq/t] (cradle-to-gate, including feedstock production)	This must be determined later, as it depends on the energy input. TEA analysis is somewhat limited by the lack of larger scale prototype development, but some have estimated that GWP will range between ~0.4 and 2.6 t CO2/ t H2 produced (see Technoeconomic Analysis of PEC Water Splitting at Various Scales, https://doi.org/10.1039/9781782629863-00266). CO ₂ emissions will also depend on which materials are chosen for the device, both the active catalyst materials, as well as the frame and glass panel.
Water consumption	Water is required as substrate (i.e. raw material), but also as electrolyte (i.e. process support). Approximately 9 m ³ water is needed to produce 1 ton of H ₂
Air separation unit	Monolithic PEC device configurations need separation of output gases. DS-PEC devices are most often tandem cells, which means that gases are produced in separate compartments, hence not needing any separation unit.
Compressors	250-470 MJ/t for compressor at 300 psi or in some cases the direct output from the device is at 300 psi (DOE 2009; Pinaud et al. 2013) The final pressure for H_2 to be used as fuel needs to be 700 bar (~1000 psi)
DOI References	 B.A. Pinaud et al. (2013) Energy Environ. Sci. 6, 1983. DOI: 10.1039/c3ee40831k R. Sathre et al. (2014) Energy Environ. Sci. 7, 3264. DOI: 10.1039/c4ee01019a M.R. Shaner et al. (2016) Energy Environ.Sci. 9, 2354. DOI: 10.1039/c5ee02573g "The future of hydrogen", IEA 2019. <u>https://www.iea.org/topics/hydrogen/</u>

4. Available techno-economical analysis:

DOI	1. James et al. (2009) "Technoeconomic Analysis of Photoelectrochemical (PEC)
Reference	Hydrogen Production"
	https://www.energy.gov/sites/prod/files/2014/03/f12/pec_technoeconomic_analysis.pdf
	2. Pinaud et al (2013) Energy Environ. Sci. 6, 1983. DOI: 10.1039/c3ee40831k

	 Shaner et al. (2016) <i>Energy Environ. Sci.</i> 9, 2354. DOI: 10.1039/c5ee02573g "The future of hydrogen", IEA 2019. <u>https://www.iea.org/topics/hydrogen/</u> A. Maljusch and M. Wullenkord (2018), "Technoeconomic Analysis of PEC Water Splitting at Various Scales" <u>https://doi.org/10.1039/9781782629863-00266</u> Architectures for scalable integrated photo driven catalytic devices-A concept study, R. van de Rol et al., (2016) International journal of hydrogen energy, 41, 20823 DOI:<u>10.1016/j.ijhydene.2016.05.088</u>
Summary	

5. <u>Deliverables, milestones</u>

Define a set of deliverables that provide a series of stepping stones from the current state to the future application/vision.

Define time: short-term	2023
Deliverable, milestone	 Improving efficiency and stability of light-absorbing materials and catalysts. A review and analysis of the materials applied, and performances found, in PEC devices to date – to guide future prototype development to be applied at TRL 5 and 6 (i.e. pilot and large scale). Review and analysis of light absorbing semiconductor materials and other materials (e.g. ternary metal oxides etc) and co-catalysts that have been applied in PEC water splitting devices, with the use of key performance parameters (e.g. light absorption capability, stability, cost and scope for upscalable production).
Solved Challenges / Lifted barrier (in bullet points)	 Several metal oxides with OER activity at relatively low overpotential are available and have been tested in proof-of concepts devices with PV and Pt-based HER electrodes (e.g. WO3, BiVO4, α-Fe2O3) Remaining challenge: Molecular OER catalysts that are stable and efficient are still lacking for nano-particle and/or dye-sensitized systems
What was necessary to solve the challenge? Did it depend on advances in other fields?	To date, more than 130 semiconductors have been investigated for PEC water splitting. A greater focus on key materials that have shown some promise. In order to further

	develop prototypes, key materials of interest should to be identified through a thorough assessment of the literature.
	DS-PEC: Find more efficient substrate materials Graft more molecular species on the surface Optimize the interaction between grafted photosensitizer and catalysts
TRL	3-4 (<i>i.e.</i> bench scale)
Stability	Depends on the materials chosen, but often losses in performance show within a few days of operation.
Energetic conversion efficiency	Solar-to-hydrogen conversion efficiencies of above 1 % in PEC or DS-PEC cells .
Scale	Bench-top prototypes > 50 cm ²
DOI Reference	10.1039/C5RA20115B 10.1038/ncomms3195 10.1002/aenm.201801403 10.1021/acsnano.5b03859

Define time: medium-term	2030
Deliverable, milestone	 Artificial quantasome realized. HER catalysts from abundant, non-platinum group metals working at medium/low overpotential. Either metal oxides (for hybrid or buried junction devices), or molecular catalysts (for liquid phase dye-sensitized devices). Improved STH conversion efficiency of inherently stable PEC materials (<i>e.g.</i> transition metal oxides) to ~10% and producing demonstrators at a higher TRL level (meter square scale, TRL 5 to 6).
Solved Challenges / Lifted barrier (in bullet points)	To date, PEC tandem prototypes have only achieved STH efficiencies of up to ~1%, and DS-PEC at 0.03%. A key challenge is to improve the STH efficiencies of both PEC and DS-PEC prototypes, and scale-up to TRL 5 (i.e. demonstrator scale). Medium-time frame milestones are:

	 Demonstration of operation with solid (membrane) electrolyte for solid state PEC cells Implementation of a water vapor absorber with the
	photoanode
	 Self-organization fully mastered to avoid recombination. Improved photocathodos for BEC calls Their
	 Improved photocathodes for PEC cells. Their improvement may be achieved by optimizing existing materials (e.g. Cu₂O) of promise or developing alternative materials (e.g. CuFeO₂). Scale-up and demonstration of larger prototypes - Unity ultra-bandgap, light conversion efficiency, and stability for several weeks, should be incorporated within larger prototypes. This may require the translation of synthetic methods used in the lab, to those more compatible with industry methods used to grow materials at scale. Moreover, attention should be given to the additional challenges that are faced, when fabricating efficient prototypes on the m² scale (e.g. the effect of pH and ionic conductivity, electrode resistance etc). Guidance from TEA & LCA analysis - to date, few TEA & LCA have been carried out on PEC water splitting devices. TEA & LCA analysis should be developed, and applied more rigorously to promising prototype architectures.
What was necessary to solve the challenge? Did it depend on advances in other fields?	To solve this challenge requires collaborative research efforts between those who work in the areas of materials science (materials development), chemical engineering (prototype development) and TEA & LCA (economical evaluation).
TRL	5 – 6 (<i>i.e.</i> demonstrator scale)
Stability	Several months
Energetic conversion efficiency	Target ~10 % STH efficiency (more modest than targets for traditional PV materials given the lower light absorption found in such inherently stable materials yet favorably lower production cost)
Scale	Demonstrate >1 m ² scale prototypes
DOI Reference	10.1002/aenm.201801403 10.1038/srep11141

10.	.1038/s41560-017-0057-0
10.	.1039/C6EE03036J
10.	.1038/NPHOTON.2012.265
DC	DI: 10.1021/ar900110c
DC	DI: 10.1039/c7cc00022g
DC	DI: 10.1021/jacs.6b03889
DC	DI: 10.1039/c4cs00448e

Define time: long-term	2050
Deliverable, milestone	Maintaining high STH conversion efficiency at between ~15 to 20%.
	Demonstrators at a higher TRL level (meter square scale, TRL 6-7).
	Developed membrane-based devices able to take H2O from the air
Solved Challenges / Lifted barrier (in bullet points)	• Demonstration of operation with solid (membrane) electrolyte
	• Implementation of a water vapor absorber with the photoanode
	• Efficient and stable photoelectrodes in PEC devices, based on abundant, non-platinum group metals working at low overpotential. Either metal oxides (for PEC devices), or molecular catalysts (for DS-PEC devices).
What was necessary to solve the challenge? Did it depend on advances in other fields?	Discovery of catalytic materials and molecules, made from abundant elements. Some are known today but require further fundamental research.
	Possible advancements in coating science (<i>e.g.</i> atomic layer deposition, chemical vapour deposition <i>etc</i>) may better enable the development of scalable protection methods of such materials.
TRL	6-7 (i.e. demonstrator scale pilot)
Stability	Several months with less than 20% loss in efficiency
Energetic conversion efficiency	Target between ~15 and 20% STH (higher than inherently stable materials)

Scale	In situ prototypes
DOI Reference	10.1039/C6EE03036J 10.1021/cr1002326 10.1038/nenergy.2017.28

Link to TRL level

At TRL 5-6:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome	
Market barriers to be overcome	

At TRL 7-8:

Production volume	50 000 t/yr (= current production volume from pure electrolysis)
Light harvesting area needed per t/product	Assuming 1000 W/m ² At 10-15% STH efficiency: 35-55 m ² /t H ₂ (1 t/day production) For northern European insolation: ~175-275 m ² /t (Ref: James et al. (2009) "Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production" https://www.energy.gov/sites/prod/files/2014/03/f12/pec_technoe conomic_analysis.pdf)
Political/societal barriers to be overcome	Subsidies for hydrogen infrastructure (storage, transport, fuelling stations), to aid pilot plants and community-based testbed installments. European-wide outreach to boost public acceptance.
Market barriers to be overcome	Interest in H2 as fuel must be raised, e.g. Industry need to increase volumes in the fuel cell vehicle segment.

At TRL 9:

Production volume 70 Mt/yr (= current global production from steam reformine	g)
--	----

Light harvesting area needed per t/product	Assuming 1000 W/m ² At 30% STH efficiency: 10-20 m ² /t H ₂ (1 t/day) (see above) For northern European insolation, area increases to ~50-100 m ² /t
Political/societal barriers to be overcome for market introduction	CO ₂ -tax on artificial fertilizers from traditional fossil fuel-dense production. Tax alleviations for fuel-cell car owners.
Market barriers to be overcome	Switch from production from fossil sources must not only be economically feasible, but also bring additional value to producers. New opportunities for producers with no previous investments in fossil technology is necessary.

6. Opportunity criteria

What are the criteria that make this technology an opportunity when ready? Score the potential opportunity from 0 (very low) to 12 (very high). Each contributor provides an individual score (we average afterwards).

Opportunity criteria	Individual Score
Scalability, from individual house to communal small-scale and large-scale facilities	12
End-user price-tag on installment, competitive to other solutions	10
End-user (prosumer) access to renewable hydrogen at own property/compound	12
Customization of design and connection to other processes	

7. Feasibility criteria

What factors determine the feasibility of the final application? Score the potential feasibility from 0 (very low) to 12 (very high). Each contributor provides an individual score (we average afterwards).

Feasibility criteria	Individual Score
Ease of installment	10
Scalability	12
Management cost (time and monetary)	7
Price-tag on installment	6 (depends on available subsidies)
Recyclability on decommissioning	5
Lifetime (stability) of installment	10
Large-scale production necessitating new infrastructure	10

8. Key learning points

From the exploration of the selected topic, what are the key learning points? (Resources, enablers, barriers, decision points, knowledge gaps, risks)

Decision points	
Knowledge gaps	
Risks	

<u>Resources</u>

Suggestion	Please detail
Critical, rare elements	Non-noble metals are desirable, but materials using abundant metals need to be developed.
Non-fluctuating energy sources	Dye-sensitized solar fuels devices may be more tolerant towards intermittent energy sources, but this needs to be investigated.
Hydrogen storage	Engineering and technological development which entails more investments rather than research.
CO2 storage	-
Water purification	Current technologies such as electrolysis (approach 1) have a great need for pure water. However, this does not have to be a limitation in future solutions. Some proof-of-principle devices are robust in impure

	water. More research Is needed to find this out.
CO2 from the atmosphere	-
Concentrated, pure CO2	-
Specific, new infrastructures	
Low-cost, low-carbon electricity	-
Renewable energy	
Renewable heat	Solar heat can be utilized in conjunction with flat panel solar fuel devices.

Breakthroughs in key enabling disciplines

Scale-Up	Present SOTA is very small lab-scale devices. Scale-up must be part of research and development to reach further than TRL3.
System integration	Inherent to the technology.
Novel reactor designs	Reactor/device design is a fundamental part of the development of this technology.
Novel catalyst materials: earth-abundant, non-toxic, efficient, stable	This is where most of the break-throughs must be in the nearest future (~5 yrs)
Novel absorber materials: earth-abundant, non-toxic, efficient, stable	See above.
Standardized life-cycle assessment methodologies	This will be needed on a long-term basis, but should be developed now.
Further developments in quantitative sustainability analysis	

Hydrogen via buried-junction photoelectrochemical cells

Technology	PEC Buried Junction								
Targeted product	H	NH ₃	CH₃OH	EtOH	CH₄	Jet fue	I CO ₂	Othe	er
	х								
Nature of active material	X Solid-state Inorganic		te c	Molecular			Biomolecular		Biological (living cells)
Sunrise approach		PV-power X ed electrocat alysis		Photoelectrochemi cal direct conversion		emi	biological and biohybrid direct conversion		Key enabler*, Other
Device category		Electrolyz 2 er		Photo(bio)electroly zer		oly	Photo(bio)reac tor		fermentors, thermocatalytic reactors
Contribution to SUNRISE goals (what?)	Х	X Sustainable low-carbon production of carbon-based fuels with high efficiency and competitive costs X Sustainable low-carbon production of carbon-based commodity chemicals with high efficiency and competitive costs							
	Х							emicals with high	
	Х	Sustainable low-carbon production of <u>ammonia</u> with high efficiency and competitive costs							
	Х	Sustainable low-carbon production of <u>hydrogen</u> with high efficiency and competitive costs							
		CO ₂ as a valuable feedstock							
		Sustainable building materials, mineralization, long-lasting C-based materials							
Sustainability criteria		Carbon capture from the atmosphere							
		Carbon capture from point sources/ flue gas							
		Exclusive use of abundantly available, non-toxic and non-critical elements							
	Х	Sunligh	t as the p	rimary en	ergy so	urce			
		Low resource consumption							
	Х	X Solar to products yields tenfold to hundredfold higher than current biomass practice							

Envisaged production system	X Decentralized, local production at small scale (households, niche applications) Large-scale production using existing centralized infrastructure X Large-scale production necessitating new centralized infrastructure						
Rough timeline (when?)	Short term (2020-25)		Medium term (2025–30)		Long term (2030–50)		
	TRL° 3-5		TRL°	5- 7	TRL°	7- 8	
Who are the main actors? Who has to be involved?	Harvard JCAP EPFL ICIQ Forsch.Julich Helmholtz Berli + Many r	n nore i	n the EU				

* key enabler: fundamental for diverse technological approaches ° TRL: see Annex

Please indicate who gave concrete input; this is **optional**, but allows us to quantify the reach of the proposed technological solution.

Contributors	Vincent Artero (CEA), Leif Hammarström (Uppsala), Tobias Gärtner (Fraunhofer), Artur Braun (Empa), Gustav Berggren (Uppsala), Johannes Messinger (Uppsala), Andreas Kafizas (Imperial), Thomas Soller (Siemens), Laurent Baraton (Engie)
Affiliation	

1. Short description of the proposed technological solution

Main technological elements, working principle (max. 5 lines)	A PV material is protected from solution by a cover layer, that works as an ohmic contact to catalyst layers on the surface, forming a stand-alone "artificial leaf". It can be viewed as an integrated PV-electrolysis device where the ohmic contact layers are nm-sized "wires". High STH efficiency (19%) and relatively long-term stability (several days) has been achieved.
Why is this technology not commercially available right now? What are the major challenges?	Very new development. Too expensive to manufacture. Lack of demand for renewable H2. Products not separated.

What does it take to make it happen? (in short)	Manufacturing methods plus upscaling.
What is the benefit for society? (in short)	Sustainable H_2 production in scalable systems, for implementation in any desirable or necessary scale. Decentralisation of production of H_2 as fuel. Energy independence on local, regional and global level.

2. Existing R&I projects

Existing national/EU project	Final objective	TRL	Run-time	Funding Instrument

3. <u>State-of-the-Art: where are we now?</u>

Definitions: specific energy consumption (**SEC**) in GJ/t is the amount of energy that an average plant requires to produce a specific product. It includes net electricity and fuel consumption to provide heat, hence processes generating electricity or supplying excess steam are accounted for in the SEC. The **total energy demand** in addition to the SEC contributions also includes the energy required to produce the feedstock used in the process and the energy content of the feedstock which is built in the product. **Carbon footprint**: Emissions during synthesis of the target product comprise energy related emissions (i.e. heat and electricity) and process related emissions (e.g. CO2 generated in ammonia synthesis), i.e. **cradle to gate** contributions (Production of methanol from hydrogen and CO2 includes the supply of electricity for electrolysis of water to produce hydrogen, the electrolysis process itself, capture and supply of CO2 and subsequent methanol synthesis).

Technological solution to be developed in SUNRISE	PEC Buried Junction
TRL	~3 (now), 7-8 in 2050
Cost	Projected
Energetic conversion yield	>10% (record @19% Cheng 2018 <u>10.1021/acsenergylett.8b00920</u>) Target > 20%.

Stability	10th of hours today, 80000h in 2050
Product separation yield	Near 100% as hydrogen and oxygen are produced in separated places.
Total energy demand [GJ/t]	Unknown
Electricity needs [GJ/t]	Unknown
Energy demand utilities [GJ/t]	Unknown
Steam balance [GJ/t]	None
CO2 emissions [tCO2 eq/t] (cradle-to-gate, including feedstock production)	Strongly depend on the manufacturing processes and recyclability.
Water consumption	Low
Air separation unit	None
Compressors	Yes
DOI References	

Conventional fossil-based process	Steam-reforming of natural gas
Global annual production volume	70 Mt (total production) < 0,1% from electrolysis of water (IEA 2019)
Total energy demand [GJ/t]	165 GJ/t
Energy feedstock [GJ/t]	Natural gas (methane): 205 billion m ³ Coal: 107 Mt
Fuel demand [GJ/t]	
Steam balance [GJ/t]	I don't know what this means
Electricity [GJ/t]	?
Air separation unit	?
Compressors	?
CO2 emissions [tCO2 eq/t] (cradle-to-gate, including feedstock production)	12 t CO_2/t H ₂ net emissions (<u>not</u> including feedstock production) Up to 9% higher emissions due to source leakage
Water consumption per t product	6,6 m ³ /t
---------------------------------	---
Current TRL	9
Current cost per t product	1000 USD (1 \$/kg), with no CCUS Approx 2000 – 2500 USD (2-2,5\$/kg) with CCUS
DOI References	"The future of hydrogen", IEA 2019. https://www.iea.org/topics/hydrogen/

Biomass-based process (if any)	
Global annual production volume	
Energy demand [GJ/t]	
Feedstock demand [GJ/t]	
CO2 emissions [tCO2 eq/t] (cradle-to-gate, including feedstock production)	
Water consumption per t product	
Electricity needs [GJ/t]	
Current TRL	
Current cost per t product	
DOI References	

4. Available techno-economical analysis:

DOI Reference	James et al. (2009) "Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production" https://www.energy.gov/sites/prod/files/2014/03/f12/pec_technoeconomic_analysis.pdf
	Architectures for scalable integrated photo driven catalytic devices-A concept study, R. van de Rol et al., (2016) International journal of hydrogen energy, 41, 20823 DOI: <u>10.1016/j.ijhydene.2016.05.088</u>

Summary		
---------	--	--

5. <u>Deliverables, milestones</u>

Define a set of deliverables that provide a series of stepping stones from the current state to the future application/vision.

Define the associated time dimension.

Define time: short-/medium-/long-term, x years	Medium term (2 – 10 years)
Deliverable, milestone	Improving the stability of traditional PV materials, maintain high STH conversion efficiency at between ~15 to 20%, and producing demonstrators at a higher TRL level (meter square scale, TRL 5 to 6).
Solved Challenges / Lifted barrier (in bullet points)	 Currently, traditional PV materials, such as Si and III/V semiconductors, show the highest STH efficiencies in PEC water splitting devices (up to ~16%). However, their poor water stability and high processing cost preclude commercial viability. The key challenges are: protection methods to improve the stability of traditional PV materials this will require the development of new and scalable coating methods to stabilize traditional PV materials such as c-Si in an aqueous environment (e.g. weeks to months without substantial corrosion and loss of performance). Such materials should be used to fabricate prototypes at TRL 4 to 6 (i.e. bench to large scale). TEA and LCA of promising prototypes - to guide materials choice and development.
What was necessary to solve the challenge? Did it depend on advances in other fields?	Possible advancements in coating science (e.g. atomic layer deposition, chemical vapour deposition etc) may better enable the development of scalable protection methods of such materials.
TRL	5 – 6 (i.e. pilot and large scale)
Stability	Several months with less than 20% loss in efficiency
Energetic conversion efficiency	Target between ~15 and 20% STH (higher than inherently stable materials, as traditional PV materials are likely to be more expensive to produce and

	protect)
Scale	Demonstrate >1 m2 scale prototypes
DOI Reference	10.1039/C6EE03036J 10.1021/cr1002326 10.1038/nenergy.2017.28

Define time: short-/medium-/long-term, x years	Medium-long-term, 5-10 years (depending on what you mean by long-term)
Deliverable, milestone	Demonstrate the integrated PEC concept in tandem PEC device ("artificial photosynthesis") and/or buried-junction PV+electrolysis ("hybrid tandem" a.k.a. "artificial leaf") made of abundant materials
Solved Challenges / Lifted barriers (in bullet points)	 Proof-of-concepts exist for both tandem PECs and buried-juncrion PV+electrolysis at varying STH efficiency, however catalyst materials still partially or completely based on noble-metals (metallic or oxides)
What was necessary to solve the challenge? Did it depend on advances in other fields?	Research?
TRL	3
Stability	Several days (?)
Scale	Tandem PECs : ~1% Buried-junction or hybrid PV/electrolysis: 10-20%
Energetic conversion efficiency	Small lab scale (in the order of cm ²)
DOI Reference	DOI: 10.1073/pnas.1414290111 DOI: 10.1021/acsenergylett.8b00920 DOI: 10.1021/acs.jpcc.7b00533

Define time:	Long-term, 15+ years
short-/medium-/long-term, x years	

Deliverable, milestone	Discover and develop OER catalysts from abundant, non-platinum group metals working at medium/low overpotential. Either metal oxides (for hybrid or buried junction devices), or molecular catalysts (for liquid phase dye-sensitized devices).
Solved Challenges / Lifted barriers (in bullet points)	 Several metal oxides with OER activity at relatively low overpotential are available and have been tested in proof-of concepts devices with PV and Pt-based HER electrodes (e.g. WO₃, BiVO₄, α-Fe₂O₃) Remaining challenge: Molecular OER catalysts that are stable and efficient are still lacking for nano-particle and/or dye-sensitized systems
What was necessary to solve the challenge? Did it depend on advances in other fields?	
TRL	3
Stability	Varying, from hours to a few days
Scale	
Energetic conversion efficiency	~1-6%
DOI Reference	DOI: 10.1126/science.1246913 DOI: 10.1126/sciadv.1501764 DOI: 10.1021/acs.jpcc.7b00533

Define time: short-/medium-/long-term, x years	Long-term, 15+ years
Deliverable, milestone	Discover and develop HER catalysts from abundant, non-platinum group metals working at medium/low overpotential. Either metal oxides (for hybrid or buried junction devices), or molecular catalysts (for liquid phase dye-sensitized devices).
Solved Challenges / Lifted barriers (in bullet points)	 Efficient molecular HER catalysts are available, mainly Ni- and Fe-based. Remaining challenge: Good metal oxide HER catalsysts based on non-platinum group metals are still lacking
What was necessary to solve the challenge? Did it depend on advances in other fields?	

TRL	3
Stability	Hours time scale. Stability and efficiency of molecular Fe complexes can be improved by incorporation in MOFs or other "inert" frameworks.
Scale	
Energetic conversion efficiency	
DOI Reference	DOI: 10.1021/ar900110c DOI: 10.1039/c7cc00022g DOI: 10.1021/jacs.6b03889 DOI: 10.1039/c4cs00448e

Define time: short-/medium-/long-term, x years	Long-term, 15+ years
Deliverable, milestone	Developing or adapting new PV materials (i.e. tandem perovskytes)
Solved Challenges / Lifted barriers (in bullet points)	 Stability issue of those emerging materials toward hydrogen production environment (liquid electrolytes). Lift the cost barrier linked with multiple junction PV materials.
What was necessary to solve the challenge? Did it depend on advances in other fields?	Strongly depends on the development of the PV fields.
TRL	3
Stability	Hours time scale. Stability and efficiency of the PV part of the device is key.
Scale	
Energetic conversion efficiency	
DOI Reference	<u>10.1021/ja511739y</u> 10.1039/C8CS00699G

Link to TRL level

At TRL 5-6:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome	
Market barriers to be overcome	

At TRL 7-8:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome	
Market barriers to be overcome	

At TRL 9:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome for market introduction	
Market barriers to be overcome	

6. <u>Opportunity criteria</u>

What are the criteria that make this technology an opportunity when ready? Score the potential opportunity from 0 (very low) to 12 (very high). Each contributor provides an individual score (we average afterwards).

Opportunity criteria	Individual Score

7. Feasibility criteria

What factors determine the feasibility of the final application? Score the potential feasibility from 0 (very low) to 12 (very high). Each contributor provides an individual score (we average afterwards).

Feasibility criteria	Individual Score

8. Key learning points

From the exploration of the selected topic, what are the key learning points? (Resources, enablers, barriers, decision points, knowledge gaps, risks)

Decision points	
Knowledge gaps	
Risks	

Resources

Suggestion	Please detail
Critical, rare elements	
Non-fluctuating energy	

sources	
Hydrogen storage	
CO2 storage	
Water purification	
CO2 from the atmosphere	
Concentrated, pure CO2	
Specific, new infrastructures	
Low-cost, low-carbon electricity	
Renewable energy	
Renewable heat	

Breakthroughs in key enabling disciplines

Scale-Up	
System integration	
Novel reactor designs	
Novel catalyst materials: earth-abundant, non-toxic, efficient, stable	
Novel absorber materials: earth-abundant, non-toxic, efficient, stable	
Standardized life-cycle assessment methodologies	
Further developments in quantitative sustainability	

analysis	
Strain robustness	
Genomic stability	
Preservation (culture collection)	

Political/societal/market barriers

EU-wide, homogeneous regulatory frameworks	
Adaptation/ novel regulations (e.g. genetics, use of waste CO2,)	
EU/national regulations for the deployment of the technology/product	
EU/national incentives for the deployment of the technology/product	
Fast idea protection (patenting, etc.)	
Large capital investment for market introduction	
Standardization of efficiencies, etc.	
Societal acceptance	
Political security	
EU supply chain	

Funding/research frameworks

International collaboration	
Funding schemes for demonstrators, pilots, etc.	
Large-scale EU research initiatives	

Hydrogen photoproduction by photosynthetic microorganisms

Technology	Н	Hydrogen photoproduction by photosynthetic microorganisms											
Targeted product	ŀ	H ₂	NH ₃	CH ₃ C	ЭН	EtOH	CH₄	Jet fu	el	CO ₂	Ot	ne	r
Nature of active material		Solid-state Inorganic			Molecular			Biomolecular		х	Biological (living cells)		
Sunrise approach		PV-powered electrocatalys is			Photoelectrochemical direct conversion		х	Biological and biohybrid direct conversion			Key enabler*, Other		
Device category		Electrolyzer			Photo(bio)electrolyzer		х	Photo(bio)reacto	r		fermentors, thermocatalytic reactors		
Contribution to SUNRISE goals (what?)		Sustainable low-carbon production of <u>carbon-based fuels</u> with high efficiency and competitive costs											
		Sustainable low-carbon production of carbon-based <u>commodity chemicals</u> with high efficiency and competitive costs					micals with high						
		S	Sustainable low-carbon production of <u>ammonia</u> with high efficiency and competitive costs					and competitive					
	>	Sustainable low-carbon production of <u>hydrogen</u> with high efficiency and competitiv costs					and competitive						
	\underline{CO}_2 as a valuable feedstock												
		Sustainable building materials, mineralization, long-lasting C-based materials											
Sustainability		Carbon capture from the atmosphere											
ontonia		Carbon capture from point sources/ flue gas x Exclusive use of abundantly available, non-toxic and non-critical elements											
	>							ments					
	>	(5	Sunlight	t as th	e p	rimary en	ergy so	urce					
	>	(L	ow res	ource	COI	nsumptior	า						
	>	Solar to products yields tenfold to hundredfold higher than current biomass practice											

Envisaged production system	X	X Decentralized, local production at small scale (households, niche applications) Large-scale production using existing centralized infrastructure Large-scale production necessitating new centralized infrastructure				
Rough timeline (when?)	Short term (2020-25)		Medium term (2025–30)	Medium term (2025–30)		
	TR	L°3-5	TRL°5-6		TRL°7-8	
Who are the main actors? Who has to be involved?	Up Un CE BR Te Un Aa RU Bie Hu NF He	psala Univ., Swe iversity of Turku, A, France C, Szeged, Hung I Aviv University, iversity of Münst rhus, Denamark IB, Bochum, Ger elefeld Univ., Ger mboldt Univ REL, USA Imholtz. C. Leipz	iden Finland gary Israel er, Germany many many			

* key enabler: fundamental for diverse technological approaches ° TRL: see Annex

Please indicate who gave concrete input; this is **optional**, but allows us to quantify the reach of the proposed technological solution.

Contributors	Yagut Allahverdiyeva-Rinne (Turku), Gustav Berggren (Uppsala), Joanna Kargul (Warsaw), Peter
	Lindblad (Uppsala)

1. Short description of the proposed technological solution

Main technological elements, working principle (max. 5 lines)	Hydrogen photoproduction by photosynthetic microorganisms (algae & cyanobacteria) Long-term efficient hydrogen photoproduction by photosynthetic microorganisms, using sunlight and water. Some photosynthetic green algae and cyanobacteria possess hydrogen producing enzyme (hydrogenase or nitrogenases). They naturally photoproduce H2 gas under specific environmental conditions. Due to regulatory, metabolic and also technical limitations,
	the light-to-product conversion efficiencies in photosynthetic cyanobacteria and algae are about 1-2% (under specific lab-scale cultivation conditions and/or with engineered microalgae it can be as

	high as 4%), this strongly limits their industrial application. Integration of whole cells with artificial semiconductors provides possible route towards systems circumventing the inherent limitations of the photosynthetic apparatus, enabling efficiencies beyond the 10-13% limit.
Why is this technology not commercially available right now? What are the major challenges?	The theoretical light energy to H2 energy conversion efficiency (LHCE) is around 10-13% in green algae, which is high enough for industrial applications. Despite this, there are many metabolic hindrances and technological barriers to the application of algae for H2 photoproduction at industrial levels. The major metabolic bottlenecks include: (i) the high sensitivity of the [Fe-Fe]-hydrogenase to O2; (ii) the non-dissipated proton gradient across the thylakoid membrane and (iii) alternative electron transport pathways competing for photosynthetic reducing power. High costs of algal/cyanobacteria cultivation (feedstock production) strongly affects cost effectiveness of the process.
What does it take to make it happen? (in short)	 Mining novel, more efficient and O2 tolerant hydrogenases and nitrogenases (including metatranscriptomics, metagenomics, metasecretome) Uncover electron-transport network in unicellular and heterocyst forming cyanobacteria in order to increase H2 production. Primary focus on heterocyst forming N2 fixing cyanobacteria. Funneling more solar electrons to hydrogenase / nitrogenase by eliminating competing pathways Developing novel production protocols which do not require nutrient starvation (resulting low cell fitness) but induce efficient and long-term H2. 5. Construction of special photobioreactors for cultivation (efficient biomass accumulation) and production phases (where biomass production should be limited and energy directed to products, e/g/ solid state production).
What is the benefit for society? (in short)	Production of sustainable "green" hydrogen. The main advantage of this technology is that the photosynthetic cells act as long-lived and self assembled biocatalysts enabling sustained production process. For the production platform only water and sunlight and some minerals are needed. For decreasing production costs even waste-water and sea water can be used.

2. Existing R&I projects

Existing national/EU project	Final objective	TRL	Run-time	Funding Instrument

3. <u>State-of-the-Art: where are we now?</u>

Technological solution to be developed in SUNRISE	Hydrogen photoproduction by photosynthetic microorganisms
TRL	3-4
Cost	
Energetic conversion yield	Up to 1%
Stability	months
Product separation yield	Gas mixture
Total energy demand [GJ/t]	
Electricity needs [GJ/t]	
Energy demand utilities [GJ/t]	
Steam balance [GJ/t]	
CO2 emissions [tCO2 eq/t] (cradle-to-gate, including feedstock production)	
Water consumption	
Air separation unit	
Compressors	
DOI References	

4. Available techno-economical analysis:

DOI Reference	W. A. Amos (2004) "Updated cost analysis of photobiological hydrogen production from <i>Chlamydomonas reinhardtii</i> green algae." NREL, Department of Energy, US. Milestone report NREL/MP-560-35593.
Summary	Costs as low as 0.57 USD/kg are conceivable

5. <u>Deliverables, milestones</u>

Define a set of deliverables that provide a series of stepping stones from the current state to the future application/vision. Define the associated time dimension.

Define time: short-/medium-/long-term, x years	Mining biodiversity for hydrogen producing enzymes (hydrogenases and nitrogenases) with increased efficiency and O2 tolerance. Short, 2-4 years
Deliverable, milestone	Hydrogenases stable under atmospheric oxygen; FeFe hydrogenases that show a high degree of promiscuity towards electron donors (ferredoxins) in cyanobacteria and algae. More efficient nitrogenases.
Solved Challenges / Lifted barrier (in bullet points)	
What was necessary to solve the challenge? Did it depend on advances in other fields?	
TRL	4-5
Stability	
Energetic conversion efficiency	
Scale	
DOI Reference	

Define time: short-/medium-/long-term, x years	Mapping out and optimizing relevant electron transfer pathways in cyanobacteria (main focus on heterocysts) and algae Medium 4-6 years
Deliverable, milestone	Identification of key ferredoxins; optimization of electron transfer pathways funneling electrons to N2ase or H2ase.
Solved Challenges / Lifted barriers (in bullet points)	
What was necessary to solve the challenge? Did it depend on advances in other fields?	
TRL	4-5
Stability	
Scale	
Energetic conversion efficiency	
DOI Reference	

Define time: short-/medium-/long-term, x years	Engineered cyanobacterial and algal cells acting as a long term biocatalysts producing photoH2 at competitive price
Deliverable, milestone	
Solved Challenges / Lifted barriers (in bullet points)	 O2 tolerant and highly active enzymes Efficient and cheap synthetic biology tools for diverse organisms Highly efficient tools (switches) for funneling photosynthetic electron transfer to targeted enzymes
What was necessary to solve the challenge? Did it depend on advances in other fields?	
TRL	6-7
Stability	

Scale	
Energetic conversion efficiency	
DOI Reference	

Link to TRL level

At TRL 5-6:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome	
Market barriers to be overcome	

At TRL 7-8:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome	
Market barriers to be overcome	

At TRL 9:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome for market introduction	

Market barriers to be overcome	
--------------------------------	--

6. <u>Opportunity criteria</u>

What are the criteria that make this technology an opportunity when ready? Score the potential opportunity from 0 (very low) to 12 (very high). Each contributor provides an individual score (we average afterwards).

Opportunity criteria	Individual Score

7. Feasibility criteria

What factors determine the feasibility of the final application? Score the potential feasibility from 0 (very low) to 12 (very high). Each contributor provides an individual score (we average afterwards).

Feasibility criteria	Individual Score

8. Key learning points

From the exploration of the selected topic, what are the key learning points? (Resources, enablers, barriers, decision points, knowledge gaps, risks)

Decision points	
Knowledge gaps	

Risks	

<u>Resources</u>

Suggestion	Please detail
Critical, rare elements	
Non-fluctuating energy sources	
Hydrogen storage	
CO2 storage	
Water purification	
CO2 from the atmosphere	
Concentrated, pure CO2	
Specific, new infrastructures	
Low-cost, low-carbon electricity	
Renewable energy	
Renewable heat	

Breakthroughs in key enabling disciplines

Scale-Up	
System integration	
Novel reactor designs	
Novel catalyst materials: earth-abundant, non-toxic, efficient, stable	

Novel absorber materials: earth-abundant, non-toxic, efficient, stable	
Standardized life-cycle assessment methodologies	
Further developments in quantitative sustainability analysis	
Strain robustness	
Genomic stability	
Preservation (culture collection)	

Political/societal/market barriers

EU-wide, homogeneous regulatory frameworks	
Adaptation/ novel regulations (e.g. genetics, use of waste CO2,)	
EU/national regulations for the deployment of the technology/product	
EU/national incentives for the deployment of the technology/product	
Fast idea protection (patenting, etc.)	
Large capital investment for market introduction	
Standardization of efficiencies, etc.	

Societal acceptance	
Political security	
EU supply chain	

Funding/research frameworks

International collaboration	
Funding schemes for demonstrators, pilots, etc.	
Large-scale EU research initiatives	

Hydrogen photoproduction by biomolecular technologies

Technology	Hydrogen photoproduction by biomolecular technologies											
Targeted product	ŀ	−− 2	NH ₃	CH ₃ C	ЭН	EtOH	CH₄	Jet fu	el	CO ₂	Other	
Nature of active material		Solid-state Inorganic			Molecular		х	Biomolecular		Biological (living cells)		
Sunrise approach		PV-powered electrocatalys is		x	Photoelectrochemical direct conversion			biological and biohybrid direct conversion		Key enabler*, Other		
Device category		Electrolyzer X Photo(bio)electrolyzer Photo(bio)reactor ferment thermodic reactor		fermentors, thermocatalytic reactors								
Contribution to SUNRISE goals (what?)		S	Sustainable low-carbon production of <u>carbon-based fuels</u> with high efficiency and competitive costs									
(e	Sustainable low-carbon production of carbon-based <u>commodity chemicals</u> with high efficiency and competitive costs									
		s c	Sustainable low-carbon production of <u>ammonia</u> with high efficiency and competitive costs									
	>	< 0	Sustainable low-carbon production of <u>hydrogen</u> with high efficiency and competitive costs									
		<u>c</u>	<u>CO₂ as a valuable feedstock</u>									
		S	Sustainable building materials, mineralization, long-lasting C-based materials									
Sustainability criteria		Carbon capture from the atmosphere										
		С	Carbon capture from point sources/ flue gas									
	>	E	Exclusive use of abundantly available, non-toxic and non-critical elements									
	>	s	Sunlight	t as th	e pi	rimary en	ergy sou	urce				
	>	L	ow res	ource	cor	nsumptior	า					
	>	Solar to products yields tenfold to hundredfold higher than current biomass practice										

Envisaged				
production	x Decentralized	, local production at small s	cale (households, niche	applications)
system	Large-scale p	roduction using existing cer	ntralized infrastructure	
	Large-scale p	roduction necessitating nev	v centralized infrastructu	re
Rough timeline	Short term	Medium term	Long term	
(when?)	(2020-25)	(2025–30)	(2030–50)	
	TRL°4-7	TRL°7-8	TRL°8-9	
Who are the main actors? Who has to be involved?	Very interdisciplina (biochemistry, biop electrochemistry a biomolecular asse CeNT,UW, Poland CEA, Grenoble, Fr RUB, Germany TH Wildau, Germa Leiden Uni., the Ne Amsterdam Univer Bristol Uni., UK Cambridge Uni., UK DTU, Denmark Harvard Uni., USA Uni. of Tennessee Utah Uni., USA Uni. of Tennessee Utah Uni., USA Uni. of Tennessee Utah Uni., USA ES-y Labs, Germa Freiburg Uni., Gern Arizona State Uni. Berkeley, USA VUA, Netherlands Padova Uni., Italy UC Louvain, Belgin Photovoltaic Center NUS, Singapore IPCF, CNR, Bari, I CNRS, Marseille, I ENS, France Osaka Uni., Japan e-conversion cons For upscaling: Fraunhofer, Germa	ary group of scientists/enginohysics, molecular biology, nd chemical catalysis due to mblies. any etherlands rsity, the Netherlands IK A , USA any many , USA um er for Energy (AIT), Austria taly France	heers with expertise in na genomics), photophysics to the hybrid nature of the so the comparison of the ch, Germany	atural photosynthesis s, material science, e working

Leiden Uni., the Netherlands
Wuerzburg Uni.,Germany

* key enabler: fundamental for diverse technological approaches ° TRL: see Annex

Please indicate who gave concrete input; this is **optional**, but allows us to quantify the reach of the proposed technological solution.

Contributors	Joanna Kargul (Warsaw), Yagut Allahverdiyeva-Rinne (Turku), Juliette Jouhet (Grenoble), Gustav
	Beggren (Uppsala)

1. Short description of the proposed technological solution

Main technological elements, working principle (max. 5 lines)	Development of green hydrogen producing technologies from water based on natural light harvesting catalyst that have been optimised for light capture and electron transfer. Biomolecular assemblies composed of electrode + large biomolecules with light harvesting and/or catalytic activities, e.g. robust extremophilic photosystem I, extracted from living microalgal cells that is used as the light harvester and charge separator and hydrogenases. This technology stems from the use of "living solar cells" because light harvesting components are capable of self-assembly and self-renewing through the processes that have been optimized for over 3.5 billion years of evolution for efficient solar energy conversion.
Why is this technology not commercially available right now? What are the major challenges?	Limitations due to stability of the components and wasteful back reactions. Stability, nanostructuring and interfacing of the working modules need to be optimised for efficient DET. No Life Cycle Assessment studies. For scaling up, business plan/cost evaluation need to be established.
What does it take to make it happen? (in short)	Need for upscaling studies (see key enabler: Upscaling artificial photosynthesis - Fraunhofer-led key enabler PRD) Engineering of efficient interfaces between electrode and photoelectrochemical compounds. Nanostructuring the biocomponents to increase light absorption and through the use of plasmonics and minimise back reaction and short-circuiting.
What is the benefit for society? (in short)	It is envisaged that biohybrid technologies, when optimised, will provide a viable technological alternative to costly synthetic solar-converting technologies based on the classical

photovoltaics. The biocomponents used in these technologies are non-toxic originating from living photosynthetic microorganisms. Not much energy input needed to synthesize photoactive molecules inside the cells, since the main challenge is to optimise the biomass production for extraction of photoactive biomolecular components. 20% loss of photochemical activity observed during intermittent measurements of photochemical activity of immobilised photosystem I from extremophilic algae over 12 months under 3500 uE/m2/s illumination with white light.

2. Existing R&I projects

Existing national/EU project	Final objective	TRL	Run-time	Funding Instrument
e-conversion	Fundamental studies on solar conversion processes. Development of solar-conversion devices for production of electricity, H2 and other chemicals.	2-3	2019-2026	DFG, Germany
OPUS14	Development of optimal organic interface for linking biophotocatalysts with various electrode materials	2-3	2018-2021	NCN, Poland

3. <u>State-of-the-Art: where are we now?</u>

Technological solution to be developed in SUNRISE	Integrated biomolecular systems for photocatalytic H2 production from water
TRL	2-3
Cost	
Energetic conversion yield	~ 1%
Stability	With 1 year of intermittent white light illumination of robust PSI

	catalyst integrated with semiconductor (hematite, p-Si) lab-scale device, 20% of photochemical activity observed.
Product separation yield	
Total energy demand [GJ/t]	
Electricity needs [GJ/t]	
Energy demand utilities [GJ/t]	
Steam balance [GJ/t]	
CO2 emissions [tCO2 eq/t] (cradle-to-gate, including feedstock production)	
Water consumption	
Air separation unit	
Compressors	
DOI References	10.1002/adfm.201401399 10.1039/C8PP00426A doi.org/10.1021/nn900748j 10.1038/s41560-018-0232-y 10.1016/j.jplph.2012.05.018 and references therein 10.1016/j.bbabio.2013.12.013 and references therein

4. Available techno-economical analysis:

DOI Reference	
Summary	

5. <u>Deliverables, milestones</u>

Define a set of deliverables that provide a series of stepping stones from the current state to the future application/vision. Define the associated time dimension.

Define time:	Short-term: 1 year
short-/medium-/long-term, x years	

Deliverable, milestone	 Genome mining for 1st generation novel robust enzymes, Selection of biocompatible electrode materials, Selection of redox-tuned conductive interfaces, Selection of novel 1st generation robust proton reduction catalysts (PRCs), Kinetic modelling of ET at the interfaces and hydrogenase enzyme catalytic centres. 	
Solved Challenges / Lifted barrier (in bullet points)	 Identification of ET competing pathways in the integrated biomolecular systems Identification of biocompatible electrode materials Identification of the 1st generation PRCs, hydrogenases and embedding matrices for increased O2 tolerance of the (bio)catalytic modules 	
What was necessary to solve the challenge? Did it depend on advances in other fields?	Thorough investigation of ET processes at the interface between electrode and enzymes or PRCs using STOA spectroelectrochemical approaches and kinetic modelling	
TRL	3-4	
Stability		
Energetic conversion efficiency		
Scale		
DOI Reference	10.1021/jacs.5b01194 10.1039/C8FD00168E 10.1021/acs.nanolett.8b04935 10.1038/s41560-018-0232-y and many other examples	

Define time: Mo short-/medium-/long-term, x years	edium-term: 3 – 5 years
--	-------------------------

Deliverable, milestone	 Genome mining for 2nd generation novel robust hydrogenase enzymes, Selection of novel 2nd generation robust PRCs, Interfacing robust photosynthetic RCs with electrode and novel hydrogenase enzymes, Interfacing robust photosynthetic RCs with electrode and novel PRCs, Interfacing whole cell biocatalysts with artificial photosensitisers; proof-of-concept devices with solar to energy efficiencies >10% with regards to target products, Modelling of ET at the biohybrid nanoassemblies Nanostructuring of each module of the biohybrid nanodevices to ensure the optimisation of DET, LCA modelling of the laboratory prototypes of the
	biohybrid nanoassemblies. Milestones in 3-5 years:
	 Libraries of novel O2-tolerant hydrogenase enzymes and PRCs, Kinetic models of ET at the interfaces and hydrogenase enzyme/PRC catalytic centres identifying ET competing pathways, Medium-scale demonstrators for bias-free biomolecular H2-production with LCA assessment, LCA evaluation of the device performance.
Solved Challenges / Lifted barriers (in bullet points)	 Use of (bio)catalytic components with significantly improved stability, activity and O2-tolerance Development of redox-compatible molecular interfaces for oriented deposition of catalytic modules Rational, ET modelling-driven design of the integrated biomolecular systems with amelioration of the competing pathways for significant improvement of STH efficiencies Improved light harvesting of the biocatalytic modules

	(photosynthetic reaction centres)	
What was necessary to solve the challenge? Did it depend on advances in other fields?	 Identification of novel robusts enzymes, catalysts and compatible interfaces for improved DET Taking advantage of plasmonic interactions to improve light harvesting of biocatalytic modules Efficient molecular wiring of the light-harvesting biocatalysts, PRCs and electrode materials for improved DET 	
TRL	5-7	
Stability	Essential to improve it for all the working modules of the biomolecular devices	
Scale	Medium, ideally all-solid-state configuration	
Energetic conversion efficiency	5%	
DOI Reference		

Define time: short-/medium-/long-term, x years	Long-term: 10 – 20 years
Deliverable, milestone	 Construction of viable solar-to-hydrogen biomolecular devices, Macroscaling of the viable laboratory prototypes based on the results of LCA modelling yielding the TRL8 of the solar hydrogen production installations based on the best performing biomolecular systems. Milestones in 10-20 years: Libraries of 3rd generation novel O2-tolerant hydrogenase enzymes and PRCs, Large-scale demonstrators for biomolecular H2-production with LCA assessment, LCA evaluation of the large-scale device performance.

Solved Challenges / Lifted barriers (in bullet points)	 As for medium-term challenges but also with complete LCA studies and full assessment of stability and performance Fully integrated solid-state systems operational at a medium scale (1 m2) with STH efficiencies of 10%.
What was necessary to solve the challenge? Did it depend on advances in other fields?	No significant progress in biomolecular technologies can be made without a highly interdisciplinary approach (for rapid development of catalysts of increased stability and activity when interfaced with electrode materials, more robust enzymes, compatible electrode materials and interfaces).
TRL	7-8
Stability	Essential to improve the stability of (bio)catalytic components
Scale	
Energetic conversion efficiency	
DOI Reference	

Link to TRL level

At TRL 5-6:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome	
Market barriers to be overcome	

At TRL 7-8:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome	

|--|--|

At TRL 9:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome for market introduction	
Market barriers to be overcome	

6. <u>Opportunity criteria</u>

What are the criteria that make this technology an opportunity when ready? Score the potential opportunity from 0 (very low) to 12 (very high). Each contributor provides an individual score (we average afterwards).

Opportunity criteria	Individual Score
Decentralised production of H2 for further reduction processes leading to chemical synthesis of complex molecules	12
Low-cost of biophotocatalytic and synthetic PRCs with the minimised use of rare or toxic elements	12
Use of light harvesting and redox active biocatalysts that are self assembling, self-renewing and optimised for primary solar conversion process (nearly 100% efficiency of primary charge separation)	12
Cost-effective purification of biocatalysts from large-scale cultures of extremophilic microorganisms taking advantage of laboratory evolution (for improved O2-stability, activity and oriented nanostructuring, e.g. by genetic introduction of affinity tags, DNA origami etc.)	12

7. Feasibility criteria

What factors determine the feasibility of the final application? Score the potential feasibility from 0 (very low) to 12 (very high). Each contributor provides an individual score (we average afterwards).

Feasibility criteria	Individual Score					
Improved efficiency of the complete biomolecular H2-producing systems by optimising the stability, nanostructuring, light-harvesting and ET properties of the working modules and interfaces	12					

8. Key learning points

From the exploration of the selected topic, what are the key learning points? (Resources, enablers, barriers, decision points, knowledge gaps, risks)

Decision points	Identification of ET competing pathways Synthesis of matrices for embedding (bio)catalytic working modules that improve their O2 tolerance and stability Identification of nanostructured biocompatible plasmonic materials to boost the light harvesting and photochemical activity of the catalysts in medium-to-large scale devices
Knowledge gaps	
Risks	

Resources

Suggestion	Please detail
Critical, rare elements	
Non-fluctuating energy sources	

Hydrogen storage	
CO2 storage	
Water purification	
CO2 from the atmosphere	
Concentrated, pure CO2	
Specific, new infrastructures	
Low-cost, low-carbon electricity	
Renewable energy	
Renewable heat	

Breakthroughs in key enabling disciplines

Scale-Up	essential					
System integration	Development of highly conductive interfaces that can improve DET and O2-tolerance of the catalytic modules. The biocatalysts have been used with novel matrices which show significantly improved O2 tolerance and stability.					
Novel reactor designs	yes					
Novel catalyst materials: earth-abundant, non-toxic, efficient, stable	yes for PRCs					
Novel absorber materials: earth-abundant, non-toxic, efficient, stable	Use of natural light harvesting properties of biophotocatalysts that can be further improved by plasmonic resonance interactions					
Standardized life-cycle assessment methodologies	Essential when developing medium-to-large scale devices					

Further developments in quantitative sustainability analysis	yes
Strain robustness	Use of extremophiles for isolation of the most robust photosynthetic reaction centres and redox active enzymes
Genomic stability	
Preservation (culture collection)	

Political/societal/market barriers

EU-wide, homogeneous regulatory frameworks	
Adaptation/ novel regulations (e.g. genetics, use of waste CO2,)	
EU/national regulations for the deployment of the technology/product	
EU/national incentives for the deployment of the technology/product	
Fast idea protection (patenting, etc.)	
Large capital investment for market introduction	
Standardization of efficiencies, etc.	
Societal acceptance	
Political security	
EU supply chain	

Funding/research frameworks

International collaboration	X
Funding schemes for demonstrators, pilots, etc.	X
Large-scale EU research initiatives	X

Baggies with particulate systems

Technology												
Targeted product	ł	H ₂	NH ₃	CH₃Oŀ	1	EtOH	CH₄	Jet fu	el	CO ₂	Other	
Nature of active material	х	So In	Solid-state Inorganic			Molecular			Biomolecular	Biological (living cells)		
Sunrise approach		P\ ele	V-powe ectroca	ered Italysis	x	Photo(electro)chemi cal direct conversion			biological and biohybrid direct conversion	Key enabler*, Other		
Device category		El	ectrolyzer Photo(bio)electrolyz er		trolyz	x	Photo(bio)reacto	tor fermentors, thermocatalytic reactors				
Contribution to SUNRISE goals (what?)			Sustainable low-carbon production of <u>carbon-based fuels</u> with high efficiency and competitive costs									
		e	Sustainable low-carbon production of carbon-based <u>commodity chemicals</u> with high efficiency and competitive costs									
		S	Sustainable low-carbon production of <u>ammonia</u> with high efficiency and competitive costs									
)	x s	Sustainable low-carbon production of <u>hydrogen</u> with high efficiency and competitive costs									
		<u>(</u>	\underline{CO}_2 as a valuable feedstock									
		Sustainable building materials, mineralization, long-lasting C-based materials										
Sustainability criteria		Carbon capture from the atmosphere										
		Carbon capture from point sources/ flue gas										
		Exclusive use of abundantly available, non-toxic and non-critical elements										
	>	Sunlight as the primary energy source										
)	X Low resource consumption										
)	X Solar to products yields tenfold to hundredfold higher than current biomass practice										
Envisaged production system	X Decentralized, local production at small scale (households, niche applications) Large-scale production using existing centralized infrastructure Large-scale production necessitating new centralized infrastructure											
---	--	--	-------------	--------------------------	-------------	------------------------	--------	--				
Rough timeline (when?)	Short term (2020-25)		5)	Medium term (2025–30)		Long term (2030–50)						
	TR	٢L°	3 - 5	TRL°	5 - 7	TRL°	1 0					
Who are the main actors? Who has to be involved?	Un To Da Jia Un Ky To Mit	Univ Tokyo Tokyo Univ. Science Dalian Institute of Chemical Physics Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Univ Houston Kyoto Univ Tokyo Tech Mitsubishi HyperSolar ? (UCSB)										

* key enabler: fundamental for diverse technological approaches ° TRL: see Annex

Please indicate who gave concrete input; this is **optional**, but allows us to quantify the reach of the proposed technological solution.

Contributors Leif Hammarström (Uppsala University)	
--	--

1. Short description of the proposed technological solution

Main technological elements, working principle (max. 5 lines)	Simple and cheap baggie-type reactors where semiconductor particles in water solution harvest light and separate charge. "Co-catalyst" material is deposited to collect charges and catalyse HER and OER, respectively. The HER and OER reactions could occur on a single particle, or on separate particles. In the latter case, the HER and OER particles can be linked as tandem particles, or connected via a diffusional redox shuttle (e.g. iodate). HER and OER particles may be in separate bags (product separation).
Why is this technology not commercially available right	Present materials do not show good enough performance.

now? What are the major challenges?	
What does it take to make it happen? (in short)	Better materials. Better solutions for separating charge and connecting the HER and OER reactions. Product separation technologies
What is the benefit for society? (in short)	Sustainable H_2 production in scalable systems, for implementation in any desirable or necessary scale. Decentralisation of production of H_2 as fuel. Energy independence on local, regional and global level.

2. Existing R&I projects

Existing national/EU project	Final objective	TRL	Run-time	Funding Instrument
None in the EU?				
Good funding in Japan and Dalian				

3. <u>State-of-the-Art: where are we now?</u>

Technological solution to be developed in SUNRISE	H2 from particulate systems
TRL	3-5 (now), >10 (commercial) in 2050
Cost	Projected
Energetic conversion yield	2% record (<i>Nature Nanotech.</i> 2014, 9, 69–73). 1% realised on photocatalytic sheets (<i>Nature Materials</i> 2016, 15, 611–615)Typically <1% for solution systems
Stability	Several months today (best systems), > 5 years in 2050
Product separation yield	Depends on reactor design
Total energy demand [GJ/t]	Unknown

Electricity needs [GJ/t]	None
Energy demand utilities [GJ/t]	For separation and compression of product
Steam balance [GJ/t]	None
CO2 emissions [tCO2 eq/t] (cradle-to-gate, including feedstock production)	Probably comparatively low, depending on the manufacturing processes and recyclability.
Water consumption	Low
Air supply unit	no
Compressors	Yes
DOI References	

4. Available techno-economical analysis:

DOI Reference	James et al. (2009) "Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production" https://www.energy.gov/sites/prod/files/2014/03/f12/pec_technoeconomic_analysis.pdf
Summary	H2 production at 1.63 USG/kg is possible

5. Deliverables, milestones

Define a set of deliverables that provide a series of stepping stones from the current state to the future application/vision. Define the associated time dimension.

Define time: short-/medium-/long-term, x years	Medium term (2 – 10 years)
Deliverable, milestone	 Improved charge transport and reduced charge recombination, allowing for much higher STH efficiencies than SOTA. New methods for cheap product separation (single bag systems). Improved mass transport between HER and OER + good gas separating membranes (two-bag systems). Good performance with only scalable catalyst elements.

Solved Challenges / Lifted barrier (in bullet points)	 A large range of functional materials discovered, many without precious elements. "Co-catalysts", however, are based on precious/non-scalable elements (Pt, Ru, Rh, Ir) in all the best performing systems. Tandem systems with higher efficiency than a single bandgap system. Asymmetric single-particle systems with intrinsic electric fields, directing electrons and holes to the respective (HER and OER) catalyst.
What was necessary to solve the challenge? Did it depend on advances in other fields?	Research, mainly within this field. Improved methods for materials synthesis and characterization of nanoparticle structure and electronic properties.
TRL	5-7
Stability	Several months with less than 20% loss in efficiency
Energetic conversion efficiency	Target >5% STH
Scale	Demonstrate >1 m2 scale prototypes
DOI Reference	10.1039/c3cs60378d 10.1038/natrevmats.2017.50 10.1039/c5ee01434d 10.1021/ar300227e

Define time: short-/medium-/long-term, x years	
Deliverable, milestone	
Solved Challenges / Lifted barriers (in bullet points)	
What was necessary to solve the challenge? Did it depend on advances in other fields?	
TRL	
Stability	

Scale	
Energetic conversion efficiency	
DOI Reference	

Define time: short-/medium-/long-term, x years	
Deliverable, milestone	
Solved Challenges / Lifted barriers (in bullet points)	
What was necessary to solve the challenge? Did it depend on advances in other fields?	
TRL	
Stability	
Scale	
Energetic conversion efficiency	
DOI Reference	

Define time: short-/medium-/long-term, x years	
Deliverable, milestone	
Solved Challenges / Lifted barriers (in bullet points)	
What was necessary to solve the challenge? Did it depend on advances in other fields?	
TRL	
Stability	

Scale	
Energetic conversion efficiency	
DOI Reference	

Link to TRL level

At TRL 5-6:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome	
Market barriers to be overcome	

At TRL 7-8:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome	
Market barriers to be overcome	

At TRL 9:

Production volume	
Light harvesting area needed per t/product	
Political/societal barriers to be overcome for market introduction	

Market barriers to be overcome

6. <u>Opportunity criteria</u>

What are the criteria that make this technology an opportunity when ready? Score the potential opportunity from 0 (very low) to 12 (very high). Each contributor provides an individual score (we average afterwards).

Opportunity criteria	Individual Score

7. Feasibility criteria

What factors determine the feasibility of the final application? Score the potential feasibility from 0 (very low) to 12 (very high). Each contributor provides an individual score (we average afterwards).

Feasibility criteria	Individual Score

8. Key learning points

From the exploration of the selected topic, what are the key learning points? (Resources, enablers, barriers, decision points, knowledge gaps, risks)

Decision points	
Knowledge gaps	

Risks	

<u>Resources</u>

Suggestion	Please detail
Critical, rare elements	
Non-fluctuating energy sources	
Hydrogen storage	
CO2 storage	
Water purification	
CO2 from the atmosphere	
Concentrated, pure CO2	
Specific, new infrastructures	
Low-cost, low-carbon electricity	
Renewable energy	
Renewable heat	

Breakthroughs in key enabling disciplines

Scale-Up	
System integration	
Novel reactor designs	
Novel catalyst materials: earth-abundant, non-toxic, efficient, stable	

Novel absorber materials: earth-abundant, non-toxic, efficient, stable	
Standardized life-cycle assessment methodologies	
Further developments in quantitative sustainability analysis	
Strain robustness	
Genomic stability	
Preservation (culture collection)	

Political/societal/market barriers

EU-wide, homogeneous regulatory frameworks	
Adaptation/ novel regulations (e.g. genetics, use of waste CO2,)	
EU/national regulations for the deployment of the technology/product	
EU/national incentives for the deployment of the technology/product	
Fast idea protection (patenting, etc.)	
Large capital investment for market introduction	
Standardization of efficiencies, etc.	

Societal acceptance	
Political security	
EU supply chain	

Funding/research frameworks

International collaboration	
Funding schemes for demonstrators, pilots, etc.	
Large-scale EU research initiatives	