

Institut de Recherches en Technologies et Sciences pour le Vivant
 Fonctions intégrées des protéines - Du vivant aux nanotechnologies

Direction des Sciences du Vivant

The Mössbauer facility for Biology at the iRTSV

Thematic $\mathrm{n}^{\circ} 11$

November 2012

Editorial

Page 1

Present Mössbauer Iron-sulfur proteins: Biogenesis and activities enzymatic activities
Nonheme iron enzymes and model systems

Page 2
Page 3

Conclusion and perspectives

Page 5

Brief historical outline
The discovery of Mössbauer effect and spectroscopy had a profound and immediate impact on solid state physicists in the 1960s. At that time J. Chappert assembled a team working on hyperfine interactions in solids in the Physics Department of CEA-Grenoble ${ }^{[2]}$. Over thirty years their work encompassed the characterization of various kinds of solids ${ }^{[3]}$, amorphous alloys and intermetallics, composed of iron of course but also rare earths and actinides. After JP Sanchez joined in the early 1990s these studies were pursued. The increasing use of a broadened set of physical techniques caused the decline of the use of Mössbauer spectroscopy and the final closing of the Mössbauer facility in the early 2000s.

In those last years, relinquishing to give up Mössbauer spectroscopy, two physicists Claude Jeandey and Jean-Louis Oddou decided to join the team of Jean-Marc Latour active in bioinorganic chemistry to start a Mössbauer laboratory devoted to the study of iron proteins and synthetic models.

This kind of biologically oriented Mössbauer studies had already been conducted in the past in the Physics Department. As early as 1965 Chappert and coworkers ${ }^{[4]}$ had studied the magnetic properties of ferritin: this iron storage protein indeed fascinated physicists by its ability to store as many as 4000 Fe atoms in the cavity formed by the association of 24 protein chains. Several years later, in the early 1980s, Régnard, Marchon and

> Oxford Instruments Cryomagnet Spectromag 4000 acquired in 2007
coworkers ${ }^{[5]}$ used Mössbauer spectroscopy to characterize various iron porphyrins and porphyrin-cation radical complexes as models for oxidized states of hemoproteins. At about the same time, Auric and Meyer and coworkers ${ }^{[6]}$ had published a series of articles characterizing the peculiar magnetic properties of bacterial ferredoxins iron clus-
ters $[4 \mathrm{Fe}-4 \mathrm{Se}]^{2+/+}$ where the usual bridging sulfides had been replaced by selenides. This kind of study was initiated and developed through local collaborations to address biologists' and chemists' demand within the same institute. However, it did not expand to a larger community.

The facility: a few numbers

- four staff members: Martin Clémancey (IE UJF), Ricardo Garcia-Serres (MCF UJF), Geneviève Blondin (DR2 CNRS) and JeanMarc Latour (DR CEA).

- four experimental set-ups

- two cryostats and a cryomagnet (Figure) allowing measurements from 1.4 to 300 K and with magnetic fields from 0.06 to 7 teslas, applied either parallel pr perpendicular to the γ-rays
- collaborations in France (Grenoble, Lyon, Gif-sur-Yvette, Paris, Brest, Strasbourg), in Europe (United-Kingdom, Portugal, Spain, Pays-Bas), in USA, India and Asia (Japan, South Korea)
- only six similar facilities exist worldwide, three in Germany, (Lübeck, Mülheim, Kaiserslautern) and three in the USA (Carnegie Mellon, Penn State, Texas A\&M).

Jean-Marc Latour,

Present Mössbauer activities

The initial setup, based on a 1960s vintage liquid helium cryostat, has now been replaced by two cryostats and a cryomagnet featuring "third millennium technology" and elevated to the rank of "Platform for Mössbauer in Biology" to adapt to current needs. It is engaged in collaborations with research groups from all over the world and its activities are focused on two main domains: iron-sulfur proteins and nonheme iron enzymes and model systems. The main focus of all studies is to provide an improved molecular understanding of the structure and function of the systems investigated.

Iron-sulfur proteins: biogenesis and enzymatic activities

Iron-sulfur clusters (ISC) were present in the most ancient organisms and have adapted to aerobic life. They constitute one of the most widespread and important class of proteins, being involved in numerous essential biological processes: electron transfer in respiratory chain, iron and superoxide sensing, and a large panel of enzymatic functions such as hydrolysis of substrates, bond formations (DNA synthesis, RNA modification, biotin synthesis, ...) to mention only a few ${ }^{[7-8]}$. They are constituted by assemblies of iron and sulfide ions anchored to protein cysteinate residues ${ }^{[9]}$. Although various nuclearities have been found, the [2Fe-2S] and $[4 \mathrm{Fe}-4 \mathrm{~S}]$ clusters are the most commonly encountered. They can exist in several oxidation states but again the $[2 \mathrm{Fe}-2 \mathrm{~S}]^{+/ 2+}$ and $[4 \mathrm{Fe}-4 \mathrm{~S}]^{+/ 2+}$ are the most common. In a simple (may be simplistic) view the [$2 \mathrm{Fe}-2 \mathrm{~S}]^{+}$cluster can be described as a pair of strongly antiferromagnetically coupled $\mathrm{Fe}^{2+}-\mathrm{Fe}^{3+}$ ions
bridged by two sulfide S^{2-} ions, bridged by two sulfide S^{2-} ions,
that possesses an overall spin $\mathrm{S}=$ $1 / 2$ and is EPR active. Its oxidized form [2Fe-2S] ${ }^{2+}$ involves a strongly antiferromagnetically coupled pair of ferric ions $\mathrm{Fe}^{3+}-$ Fe^{3+} with a resulting overall spin $S=0$. It is EPR silent as the cluster $[4 \mathrm{Fe}-4 \mathrm{~S}]^{2+}$. Indeed in the latter, the four iron ions assembly can be viewed as an antiferromagnetically coupled dimer of the above $\mathrm{Fe}^{2+}-\mathrm{Fe}^{3+}$ pairs, thus leading to an overall spin $S=0$. Oneelectron reduction to the $[4 \mathrm{Fe}-4 \mathrm{~S}]^{+}$ state that is composed of one ferric and three ferrous ions restores an overall spin $S=1 / 2$ and the associated EPR spectrum. As a consequence of these diverse electronic states, every one of these clusters exhibits a distinct Mössbauer signature that is used to identify protein active sites and to monitor their functional changes ${ }^{[9]}$.

Figure 1: Time course of the formation of Fe-S clusters on Iscll in the absence (A) and in the presence (B) of bacterial frataxin (CyaY). Mössbauer spectra were recorded at 4.2 K Samples were frozen immediately after reaction initiation (black marks, or after an incubation time of 5 grey), 15 (orange) or 30 min (red).
tial cofactor of many biological redox reactions. The Mössbauer spectrum of the enzyme is depicted in Figure 3. Biological studies have shown that the enzyme is strongly inhibited by 4,5dithiohydroxyphthalic acid (DTHPA), but the molecular basis for this inhibition was unknown. The Mössbauer spectrum of the enzyme in the presence of DTHPA immediately shows that the inhibitor interacts with the $[4 \mathrm{Fe}-4 \mathrm{~S}]^{2+}$ cluster through one single Fe ion. Indeed, in the absence of DTHPA (left part of Figure 3), the spectrum recorded is characteristic of classical $[4 \mathrm{Fe}-4 \mathrm{~S}]^{2+}$ clusters and can be reproduced with the superposition of two slightly different quadrupole doublets (component 1: $\delta=0.44 \mathrm{~mm} . \mathrm{s}^{-1}, \Delta E_{Q}=1.25$ $\mathrm{mm} . \mathrm{s}^{-1}$; component $2: \delta=0.45 \mathrm{~mm} . \mathrm{s}^{-1}, \Delta E_{Q}=0.95$ $\mathrm{mm} . \mathrm{s}^{-1}$) of equal intensities associated with the two delocalized antiferromagnetically coupled $\mathrm{Fe}^{2+}-\mathrm{Fe}^{3+}$ pairs. Binding of a ligand to one ion of a pair induces a localization of the valences within
this pair which can eventually leads to the pair (component 2, left part of Figure 3) appearing as two distinct quadrupole doublets (components 2 and 3, right part of Figure 3): component 1 ($\delta=$ $\left.0.48 \mathrm{~mm} . \mathrm{s}^{-1}, \Delta E_{Q}=1.20 \mathrm{~mm} . \mathrm{s}^{-1}\right)$, component $2(\delta=$ $\left.0.44 \mathrm{~mm} . \mathrm{s}^{-1}, \Delta E_{Q}=1.04 \mathrm{~mm} . \mathrm{s}^{-1}\right)$ and component 3 ($\delta=0.63 \mathrm{~mm} . \mathrm{s}^{-1}, \Delta E_{Q}=2.02 \mathrm{~mm} . \mathrm{s}^{-1}$). Comparison of the Mössbauer parameters with those of a model complex and to DFT calculated values suggests that the inhibitor chelates one unique Fe ion of the cluster.
A number of radical-SAM enzymes have been discovered recently as key players in the modification of tRNA and ribosomal proteins in processes aimed at improving the accuracy of the genetic machinery. These enzymes commonly associate two $[4 \mathrm{Fe} 4 \mathrm{~S}]^{2+}$ clusters, one interacting with the SAM cofactor to initiate the generation of the adenosyl radical while the other interacts with the substrate ${ }^{[8]}$. We recently characterized by Möss-

Velocity / mm. s^{-1}

Velocity / mm. s^{-1}

Figure 3. Mössbauer spectra of as-isolated NadA recorded at 4.2 K in the absence (left) and in the presence of the inhibitor DTHPA (right).
rupole doublet with usual parameters averaging the two pair components $\left(\delta=0.45 \mathrm{~mm} . \mathrm{s}^{-1}, \Delta E_{Q}=\right.$ $1.04 \mathrm{~mm} . \mathrm{s}^{-1}$). By contrast, the second cluster requires three components to be simulated as was the case for NadA in the presence of the inhibitor: component $1\left(\delta=0.48 \mathrm{~mm} . \mathrm{s}^{-1}, \Delta E_{Q}=1.15 \mathrm{~mm} . \mathrm{s}^{-1}\right)$, component $2\left(\delta=0.3 \mathrm{~mm} . \mathrm{s}^{-1}, \Delta E_{Q}=0.9 \mathrm{~mm} . \mathrm{s}^{-1}\right)$ and component $3\left(\delta=0.60 \mathrm{~mm} . \mathrm{s}^{-1}, \Delta E_{Q}=2.07\right.$ $\left.\mathrm{mm} . \mathrm{s}^{-1}\right)$. This observation raises the question of the nature of the peculiar ligand of the unique Fe ion of this cluster. As previously, the distinction of the coordination of this Fe ion constitutes a powerful tool to investigate the reactivity of the enzyme and to address the question of its mechanism.

Velocity / mm. s^{-1}

Figure 4. Mössbauer spectra of reconstituted RimO recorded at 4.2 K showing the contribution of the "classical cluster" (blue) and the differentiated cluster (red).

Nonheme iron enzymes and model systems

For the past three decades understanding how molecular oxygen is activated and transferred to inactive substrates and duplicating this reaction has constituted one of the main challenges posed to chemists with implications ranging from basic knowledge to far-reaching industrial applications. Oxygen atom transfer is the reaction catalyzed by enzymes called oxygenases, the paradigm of which are the cytochromes P450, a class of hemethiolate proteins. After more than thirty years of intense research, the active form of cytochromes P450 has been demonstrated recently to be an $\mathrm{Fe}^{\mathrm{IV}}=\mathrm{O}$ complex of a porphyrin radical cation ${ }^{[22]}$. In the nonheme world, the most fascinating enzyme is undoubtedly methane monooxygenase that uses an oxo-bridged diiron(IV) unit to oxidize methane into methanol. Trying to elaborate catalysts that can rival these enzymes in their oxidation power and selectivity is thus a very active research domain.

High-valent iron catalysts

The first non-heme $\mathrm{Fe}^{\mathrm{IV}}=\mathrm{O}$ complexes were characterized almost a decade ago in systems that were deactivated by the use of aromatic amine ligands ${ }^{[23]}$. Mössbauer spectroscopy revealed that these systems were characterized by an $S=1$ spin state whereas all corresponding protein interme-
diates harbored a spin $S=2$ state and a higher reactivity. Improving the reactivity of these model complexes and understanding the structurereactivity relationships has become a major endeavor and Mössbauer spectroscopy has proved to be a tool of choice to characterize the electronic structures of trapped intermediates.
The influence of steric hindrance / distortion on the reactivity of the $\mathrm{Fe}^{\mathrm{IV}}=\mathrm{O}$ complex of tetranitrogen macrocylic ligands has been investigated by replacing four methyl groups 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane ligand (TMC) by four benzyl groups (TBC) (collaboration with W. Nam, Ewha Womans University, Seoul, South Korea; and E.I. Solomon,Stanford University, USA) ${ }^{[24]}$. Figure 5 illustrates the Mössbauer spectra of the complex $\mathrm{Fe}^{\mathrm{IV}}=\mathrm{O}(\mathrm{TBC})$ recorded in different temperature (from 4.2 to 78 K) and applied field (from 60 mT to 7 T) conditions to investigate its elec-
tronic structure. Simultaneous fitting of all spectra allowed to conclude that the complex possesses a $\operatorname{spin} S=1$.

Figure 5. Left: DFT calculated structure of $F e^{I V}=O(T B C)$. Right: Mössbauer spectra of $\mathrm{Fe}^{I V}=\mathrm{O}(T B C)$ (vertical bars) measured at (A-C) 4.2 K , (D) 41 K and (E) 78 K in a magnetic field of (A) $60 m T$, (B) 4 T and (C-E) 7 T. The solid (green) curve is a Spin Hamiltonian simulation with the following set of parameters: $\delta=0.22 \mathrm{~mm} . \mathrm{s}^{-1}, \Delta E_{Q}$ $=0.97 \mathrm{~mm} \cdot \mathrm{~s}^{-1}, D=29.5 \mathrm{~cm}^{-1}, E / D=0, g_{x, y, z}=2.3,2.3,2.0$ and $A_{x, y, z} / g_{N} / \beta_{N}=-18,-$ 18, -2 T. Reprinted by permission from American Chemical Society: Journal of the American Chemical Society, 2012, 134: 11791, copyright (2012).

In a similar study, it was shown that the reaction of the $\mathrm{Fe}^{\mathrm{II}}$ complex of the ligand $\mathrm{Me}_{3} \mathrm{NTB}$ ($\mathrm{Me}_{3} \mathrm{NTB}=\operatorname{tris}((\mathrm{N}$-methylbenzimidazol-2-yl) methyl)amine) with m-chloroperbenzoic acid, a classical oxygen donor, produces the corresponding $\mathrm{Fe}^{\mathrm{IV}}=\mathrm{O}$ species, that has been characterized by Mössbauer spectroscopy as an intermediate spin system $\mathrm{S}=1$ (collaboration with W. Nam, Seoul, South Korea). Reactivity studies showed that this species is one of the most active catalysts reported so far for oxygen transfer reactions to inactivated aliphatic substrates ${ }^{[25]}$.

Diiron systems

(V)The dioxygenase MiaE

This enzyme belongs to a group of enzymes involved in improving the efficiency and fidelity in genome decoding through tRNA modifications. It catalyzes the post-transcriptional allylic hydroxylation of 2-methylthio-N-6-isopentenyl adenosine, a difficult oxygenation reaction of a methyl group (Figure 6A). Mössbauer spectroscopy proved invaluable to show that the enzyme active site comprises a diiron site similar to that of Methane MonoOxygenase (collaboration with M. Atta, LCBM, Grenoble, France) ${ }^{[26]}$. Traces a and b on Figure $6 B$ reproduce Mössbauer spectra of the asisolated enzyme. They revealed the presence of at least three components that were identified thanks to a temperature- and field-dependent study. The major component (54%) which contributes the central quadrupole doublet is a diferric species that experiences a moderate antiferromagnetic coupling, revealed by the broadening of the doublet at 77 K (trace d on Figure 6B), as found in μ hydroxodiferric entities. The shoulders that flank both sides of the central doublets are assigned to a μ-oxodiferric species from its Mössbauer parameters and its strong antiferromagnetically coupling contributing 16% of the total Fe content. The remaining 30% of the iron correspond to a paramagnetic species that contributes at higher velocities (trace c on Figure 6B) and behaves as a mixed-valent $\mathrm{Fe}^{\mathrm{II}}-\mathrm{Fe}^{\text {III }}$ pair. Its presence was confirmed by EPR spectroscopy.

Figure 6. A: Reaction catalyzed by MiaE. B: Mössbauer spectra of MiaE2H (vertical bars) measured at 4.2 K in a magnetic field of 60 mT applied parallel to the γ-beam (a) or 22 mT applied perpendicular to the -beam (b) or at 77 K and zero applied field (d). Spectrum c is obtained by subtraction ($a-b$). The solid blue lines are spin-Hamiltonian simulations. Contributions from the oxodiferric and mixed valence clusters are shown in pink and green, respectively.
\square Mixed-valent Fe ${ }^{\text {II }}$ FeliI model complexes Diiron complexes have been used for decades to try and model the structure and the reactivity of various enzymes with a diiron site. They are invaluable to investigate the potential cooperativity between the two sites involved in hydrolytic or redox reactions. The complex illustrated in Figure $7 A$ is a model of the mixed valence state of hemerythrin that reproduces its pH behavior. It comprises a ferric (left)
 and a ferrous ion (right) bridged by a phenolate and two carboxylates. Their terminal ligation differs: the ferric site is bound to a bis(picolyl)amine group whereas an aniline ligand replaces a pyridine on the ferrous ion. The Mössbauer spectrum of Figure $7 B a$ shows the two quadrupole doublets of the two
ions. Interestingly, when the complex is treated by triethylamine its spectroscopic properties change drastically as shown in Figure $7 B b$. The main change that occurs in the Mössbauer spectrum

Velocity / mm. s^{-1}
concerns the ferric site whose quadrupole splitting parameter increases dramatically from $\Delta E_{Q}=0.39$ $\mathrm{mm} . \mathrm{s}^{-1}$ to $\Delta E_{Q}=1.77 \mathrm{~mm} . \mathrm{s}^{-1}$. This change reveals that the ferric ion is bound to an anionic ligand in transposition with respect to the bridging phenolate. This in turn indicates that the aniline ligand has been deprotonated and that an internal electron transfer has occurred within the diiron pair ${ }^{[27]}$. In other words, the deprotonation of the aniline has induced a valence interchange, as illustrated in Figure 7C. Further studies based on electrochemical techniques have shown that this proton-coupled intervalence transfer is a concerted process ${ }^{[28]}$. Apart from its bioinorganic interest this compound can be viewed as a proton induced redox switch.

High nuclearity Fe complexes are interesting in many respects among which understanding the interaction pathways occurring in small clusters that constitute basic elements of larger aggregates is of current interest for molecular and nanomaterials. The X-ray structure of the complex $\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right) \quad(\mu-\mathrm{OMe})_{4}(\mathrm{bisi})_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2} \bullet 4 \mathrm{MeOH}$ (Hbisi $=\mathrm{N}$-(benzimidazol-2-yl)salicylaldimine) is depicted in Figure 8A. It reveals an original arrangement of four $\mathrm{Fe}^{\text {III }}$ ions in a slightly ruffled square where they are bridged by four $\mu 2$ methoxido anions and a central $\mu 4$-oxido anion that gives rise to two magnetic interaction pathways, J_{1} and J_{2}, respectively (inset in Figure $8 B$). The temperature dependence of the magnetic susceptibility was successfully simulated within this coupling scheme with the following values of the exchange constants: $J_{1}=-1.4 \mathrm{~cm}^{-1}$, and $J_{2}=$ - $19.2 \mathrm{~cm}^{-1}$ (Figure 8B). Figure 8C illustrates the Mössbauer spectra recorded at various temperature and applied magnetic fields. They could be simultaneously simulated in the fast relaxation mode assuming a unique $\mathrm{S}=0$ system (traces a and b) or a symmetric dinuclear system with $5 / 2$ local spins (traces a, b and c) with the following
parameters $\delta=0.515$ $\mathrm{mm} . \mathrm{s}^{-1}, \quad \Delta E_{Q} \quad=$ $1.011 \mathrm{~mm} . \mathrm{s}^{-1}, \delta=0.33$, $\mathrm{x}_{\mathrm{fwhm}}=0.28 \mathrm{~mm} . \mathrm{s}^{-1}, J_{2}=$ $-18.4 \mathrm{~cm}^{-1}$ and $a_{\text {iso }}=$ 20.12 T. As a consequence, at low temperatures, the tetranuclear cluster can be described as the sum of two identical and symmetric dinuclear high-spin $\mathrm{Fe}^{\text {III }}$ units that are moderately antiferromagnetically coupled through the $\mu 4$-oxido bridge. In addition, each $\mathrm{Fe}^{\text {III }}$ ion of a pair interacts weakly with the two sites of the second pair through the $\mu 4$-oxido- μ methoxido bridging pattern (collaboration with J. Reedijk, Leiden University, The Netherlands) ${ }^{[29]}$.

Velocity / mm.s. s^{-1}

Figure 8. A. Structural, magnetic (B) and Mössbauer (C) properties of $\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)(\mu-\right.$ $\left.\mathrm{OMe})_{4}(\text { bisi })_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2} \bullet 4 \mathrm{MeOH}:$ X-ray structure (A), temperature dependence of the magnetic susceptibility (B) and Mössbauer spectra (C) recorded at zero field and 4.2 $K(a), 7 T$ and $4.2 \mathrm{~K}(b)$ and 7 T and 50 K (c). Reprinted by permission from American Chemical Society: Inorganic Chemistry, 2010, 49: 2427, copyright (2010).
to progress steadily and engage in worldwide collaborations. Such inputs and investments were necessary to expand on the foundations led by Jean-Louis Oddou who transmitted his knowledge until he retired in 2010.

Of course this short overview has not covered all of the activities, past or present, of the platform, and starting from this basis future work will engage deeper in reactivity studies of high-valent intermediates as well as the consideration of more complicated biological systems.

Conclusion and perspectives

This brief survey has also illustrated how the transmission of expertise from physics to chemistry and biology has been successfully achieved in CEA-Grenoble, since it has allowed Mössbauer activity in Grenoble not only to survive but, after inputs of new people and investments,
 ,

Les laboratoires de l'iRTSV

BCI	CBM	GPC	Éditeur et format électronique
Biologie du Cancer	Chimie et Biologie	Groupe Physiopa-	Pascal Martinez - Pascal.Martinez@cea.fr
et de l'Infection	des Métaux	thologie du Cytos-	
UMR_S 1036	UMR 5249	quelette	Comité de rédaction
CEA/Inserm/UJF	CEA/CNRS/UJF	iRTSV et UMR_S 836 UJF/Inserm/CEA/CHU	Jean-Marc Latour.
BGE	PCV		Institut de Recherches en Technologies et
Biologie à Grande	Physiologie Cellu-		Sciences pour le Vivant
Echelle	laire \& Végétale UMR 5168		http://www-dsv.cea.fr/irtsv
CEA/Inserm/UJF	CEA/CNRS/UJF/Inra		http://www-dsv.cea.fr/irtsv/lettres
			CEA Grenoble
			17 rue des Martyrs
			38054 Grenoble cedex 09
			Responsable : Jérôme Garin
			Tel. : 0438784501
			Fax : 0438785155

© CEA [2012]. Tous droits réservés. Toute reproduction totale ou partielle sur quelque support que ce soit ou utilisation du contenu de ce document est interdite sans l'autorisation écrite préalable du CEA.

